Volume 39 Issue 11
Nov 2025
Turn off MathJax
Article Contents
WU Meiqi, ZHAN Jinhui, LI Jiangtao, WANG Kun, LIU Xiaoxing. Structural Phase Transition of Single-Crystalline Iron under Shock Loading along the [110] Direction: Molecular Dynamics Simulations Based on Different Potential Functions[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110105. doi: 10.11858/gywlxb.20251037
Citation: WU Meiqi, ZHAN Jinhui, LI Jiangtao, WANG Kun, LIU Xiaoxing. Structural Phase Transition of Single-Crystalline Iron under Shock Loading along the [110] Direction: Molecular Dynamics Simulations Based on Different Potential Functions[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110105. doi: 10.11858/gywlxb.20251037

Structural Phase Transition of Single-Crystalline Iron under Shock Loading along the [110] Direction: Molecular Dynamics Simulations Based on Different Potential Functions

doi: 10.11858/gywlxb.20251037
  • Received Date: 26 Feb 2025
  • Rev Recd Date: 01 Apr 2025
  • Accepted Date: 15 May 2025
  • Available Online: 01 Apr 2025
  • Issue Publish Date: 05 Nov 2025
  • Single-crystal iron is a prototypical system for studying the dynamic behavior of metallic materials under shock loading, which is of great significance in high-pressure phase transition research due to its phase transformation mechanisms and mechanical response characteristics. In this work, molecular dynamics simulations were performed to investigate the mechanical response of single-crystal iron under shock loading along the [110] crystallographic direction. Three different potential functions (Ackland, Mishin, optimized MAEAM) were employed to examine differences in stress transmission, dislocation activity, and new phase formation, as well as to explore the coupling mechanisms between plasticity and phase transformation. The research results show that the body-centered cubic-hexagonalclose-packed (BCC-HCP) phase transition pressure (14.03 GPa) predicted by the Ackland potential function is closest to the experimental data and can better describe the coupling of plastic deformation and phase transition; the Mishin potential function shows an independent plastic stage at high strain rates; the optimized MAEAM potential function gives a higher BCC-FCC (face-centered cubic) phase transition pressure threshold (49.91 GPa), which is more consistent with the phenomenon that the FCC phase was not observed in the experiment. In addition, the three potential functions all show the same phase transition mechanism: from BCC compression to shear-induced stacking fault formation and its reorientation.

     

  • loading
  • [1]
    MAO H K, BASSETT W A, TAKAHASHI T. Effect of pressure on crystal structure and lattice parameters of iron up to 300 kbar [J]. Journal of Applied Physics, 1967, 38(1): 272–276. doi: 10.1063/1.1708965
    [2]
    LIN J F, HEINZ D L, CAMPBELL A J, et al. Iron-silicon alloy in Earthʼs core? [J]. Science, 2002, 295(5553): 313–315. doi: 10.1126/science.1066932
    [3]
    GU C, CHEN H Y, ZHAO Y S, et al. Formation of hierarchically structured martensites in pure iron with ultrahigh strength and stiffness [J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(42): e2408119121. doi: 10.1073/pnas.2408119121
    [4]
    TAKAHASHI T, BASSETT W A. High-pressure polymorph of iron [J]. Science, 1964, 145(3631): 483–486. doi: 10.1126/science.145.3631.483
    [5]
    NGUYEN J H, HOLMES N C. Melting of iron at the physical conditions of the Earthʼs core [J]. Nature, 2004, 427(6972): 339–342. doi: 10.1038/nature02248
    [6]
    SUN Y, MENDELEV M I, ZHANG F, et al. Ab initio melting temperatures of bcc and hcp iron under the Earth’s inner core condition [J]. Geophysical Research Letters, 2023, 50(5): e2022GL102447. doi: 10.1029/2022GL102447
    [7]
    BANCROFT D, PETERSON E L, MINSHALL S. Polymorphism of iron at high pressure [J]. Journal of Applied Physics, 1956, 27(3): 291–298. doi: 10.1063/1.1722359
    [8]
    唐志平. 冲击相变研究的现状与趋势 [J]. 高压物理学报, 1994, 8(1): 14–22. doi: 10.11858/gywlxb.1994.01.003

    TANG Z P. Some topics in shock-induced phase transitions [J]. Chinese Journal of High Pressure Physics, 1994, 8(1): 14–22. doi: 10.11858/gywlxb.1994.01.003
    [9]
    王昆, 肖时芳, 祝文军, 等. 动态载荷下铁相变的原子模拟研究进展 [J]. 高压物理学报, 2021, 35(4): 040110. doi: 10.11858/gywlxb.20210729

    WANG K, XIAO S F, ZHU W J, et al. Progress on atomic simulations of phase transition of iron under dynamic loading [J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040110. doi: 10.11858/gywlxb.20210729
    [10]
    ZHU Y Q, GONG Q H, YI M. Molecular dynamics investigation of shock-induced deformation behavior and failure mechanism in metallic materials [J]. Archives of Computational Methods in Engineering, 2024, 31(4): 2317–2344. doi: 10.1007/s11831-023-10045-8
    [11]
    LIU X, MASHIMO T, KAWAI N, et al. Isotropic phase transition of single-crystal iron (Fe) under shock compression [J]. Journal of Applied Physics, 2018, 124(21): 215101. doi: 10.1063/1.5040683
    [12]
    KADAU K, GERMANN T C, LOMDAHL P S, et al. Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals [J]. Physical Review B, 2005, 72(6): 064120. doi: 10.1103/PhysRevB.72.064120
    [13]
    WANG K, XIAO S F, DENG H Q, et al. An atomic study on the shock-induced plasticity and phase transition for iron-based single crystals [J]. International Journal of Plasticity, 2014, 59: 180–198. doi: 10.1016/j.ijplas.2014.03.007
    [14]
    LU Z P, ZHU W J, LU T C, et al. Does the fcc phase exist in the Fe bcc-hcp transition? a conclusion from first-principles studies [J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(2): 025007. doi: 10.1088/0965-0393/22/2/025007
    [15]
    SMITH R F, EGGERT J H, SWIFT D C, et al. Time-dependence of the alpha to epsilon phase transformation in iron [J]. Journal of Applied Physics, 2013, 114(22): 223507. doi: 10.1063/1.4839655
    [16]
    JENSEN B J, GRAY III G T, HIXSON R S. Direct measurements of the α-ε transition stress and kinetics for shocked iron [J]. Journal of Applied Physics, 2009, 105(10): 103502. doi: 10.1063/1.3110188
    [17]
    KADAU K, GERMANN T C, LOMDAHL P S, et al. Microscopic view of structural phase transitions induced by shock waves [J]. Science, 2002, 296(5573): 1681–1684. doi: 10.1126/science.1070375
    [18]
    崔新林, 祝文军, 邓小良, 等. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究 [J]. 物理学报, 2006, 55(10): 5545–5550. doi: 10.3321/j.issn:1000-3290.2006.10.095

    CUI X L, ZHU W J, DENG X L, et al. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion [J]. Acta Physica Sinica, 2006, 55(10): 5545–5550. doi: 10.3321/j.issn:1000-3290.2006.10.095
    [19]
    CUI X L, ZHU W J, HE H L, et al. Phase transformation of iron under shock compression: effects of voids and shear stress [J]. Physical Review B, 2008, 78(2): 024115. doi: 10.1103/PhysRevB.78.024115
    [20]
    AMADOU N, DE RESSÉGUIER T. Pressure waves induced by the bcc-hcp phase transition in dynamically loaded single crystal iron [J]. Computational Materials Science, 2025, 247: 113559. doi: 10.1016/j.commatsci.2024.113559
    [21]
    YAO S L, YU J D, PEI X Y, et al. A coupled phase-field and crystal plasticity model for understanding shock-induced phase transition of iron [J]. International Journal of Plasticity, 2024, 173: 103860. doi: 10.1016/j.ijplas.2023.103860
    [22]
    WANG F M, INGALLS R. Iron bcc-hcp transition: local structure from X-ray-absorption fine structure [J]. Physical Review B, 1998, 57(10): 5647–5654. doi: 10.1103/PhysRevB.57.5647
    [23]
    HAWRELIAK J, COLVIN J D, EGGERT J H, et al. Analysis of the X-ray diffraction signal for the α-ε transition in shock-compressed iron: simulation and experiment [J]. Physical Review B, 2006, 74(18): 184107. doi: 10.1103/PhysRevB.74.184107
    [24]
    LEVITAS V I. Strain-induced nucleation at a dislocation pile-up: a nanoscale model for high pressure mechanochemistry [J]. Physics Letters A, 2004, 327(2/3): 180–185. doi: 10.1016/j.physleta.2004.05.029
    [25]
    LEVITAS V I. High-pressure mechanochemistry: conceptual multiscale theory and interpretation of experiments [J]. Physical Review B, 2004, 70(18): 184118. doi: 10.1103/PhysRevB.70.184118
    [26]
    WANG B T, SHAO J L, ZHANG G C, et al. Nucleation of hcp and fcc phases in bcc iron under uniform compression: classical molecular dynamics simulations [J]. Journal of Physics: Condensed Matter, 2010, 22(43): 435404. doi: 10.1088/0953-8984/22/43/435404
    [27]
    SHAO J L, WANG P, ZHANG F G, et al. Hcp/fcc nucleation in bcc iron under different anisotropic compressions at high strain rate: molecular dynamics study [J]. Scientific Reports, 2018, 8(1): 7650. doi: 10.1038/s41598-018-25758-1
    [28]
    MEYER R, ENTEL P. Martensite-austenite transition and phonon dispersion curves of Fe1−x Nix studied by molecular-dynamics simulations [J]. Physical Review B, 1998, 57(9): 5140–5147. doi: 10.1103/PhysRevB.57.5140
    [29]
    MENDELEV M I, HAN S, SROLOVITZ D J, et al. Development of new interatomic potentials appropriate for crystalline and liquid iron [J]. Philosophical Magazine, 2003, 83(35): 3977–3994. doi: 10.1080/14786430310001613264
    [30]
    GUNKELMANN N, BRINGA E M, KANG K, et al. Polycrystalline iron under compression: plasticity and phase transitions [J]. Physical Review B, 2012, 86(14): 144111. doi: 10.1103/PhysRevB.86.144111
    [31]
    HARRISON R J, VOTER A F, CHEN S P. Embedded atom potential for BCC iron [M]//VITEK V, SROLOVITZ D J. Atomistic Simulation of Materials: Beyond Pair Potentials. New York: Springer, 1989: 219–222.
    [32]
    KADAU K, GERMANN T C, LOMDAHL P S, et al. Shock waves in polycrystalline iron [J]. Physical Review Letters, 2007, 98(13): 135701. doi: 10.1103/PhysRevLett.98.135701
    [33]
    ACKLAND G J, MENDELEV M I, SROLOVITZ D J, et al. Development of an interatomic potential for phosphorus impurities in α-iron [J]. Journal of Physics: Condensed Matter, 2004, 16(27): S2629–S2642. doi: 10.1088/0953-8984/16/27/003
    [34]
    CHAMATI H, PAPANICOLAOU N I, MISHIN Y, et al. Embedded-atom potential for Fe and its application to self-diffusion on Fe (100) [J]. Surface Science, 2006, 600(9): 1793–1803. doi: 10.1016/j.susc.2006.02.010
    [35]
    HU W Y, SHU X L, ZHANG B W. Point-defect properties in body-centered cubic transition metals with analytic EAM interatomic potentials [J]. Computational Materials Science, 2002, 23(1/2/3/4): 175–189. doi: 10.1016/S0927-0256(01)00238-5
    [36]
    STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(528) PDF downloads(41) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return