Explosive | Mass fraction | ρ/(g·cm–3) | DCJ/(km·s–1) | Q/(kJ·g–1) |
DOL | 30∶60∶5∶5 (DNTF∶HMX∶Al∶binder) | 1.84 | 8.65 | 6.56 |
DRLU | 15∶35∶20∶30 (DNAN∶RDX∶AP∶Al) | 1.88 | 6.84 | 8.19 |
Citation: | QU Yunxiang, WANG Pengfei, WU Yangfan, WANG Deya, XU Songlin. Research on the stick-slip and dynamic interface friction mechanism for fiber winding[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240953 |
同轴内外层双元组合装药是一种工程中常见的装药方式,早期主要采用不敏感炸药包覆高能炸药的方式提高整体装药对各类危险刺激的不敏感性[1]。近年来,国内外一些研究人员尝试采用高爆速炸药包覆高爆热炸药的方式调节整体装药的能量释放特性[2],即利用内、外层装药的爆速差形成聚心爆轰波形,使内层装药产生超压爆轰[3-4],进而可能提升反应速率[4-6]。虽然这方面的机理研究目前仍较少,但工程上已进行了较多的应用,且爆炸作用效果在一些方面具有优势。如Arthur[7]、尹俊婷[8]等将该类组合装药应用于杀爆战斗部中,以兼顾破片速度和冲击波超压两方面的性能优势;牛余雷等[9]对该类组合装药进行水下爆炸实验,发现冲击波传播过程的能量损失比单一装药明显减小。
这类组合装药常采用不同成型工艺或配方体系的炸药进行组合,为了确保制备过程的安全及便利,在内、外层装药之间增设较薄的金属隔层,如薄壁铝筒隔层等。由于金属隔层的冲击阻抗与炸药差异较大,可能会影响组合装药的爆轰波形,且一些金属的延展性较好,在爆轰过程中若不能马上破裂,则可能阻碍内、外层装药爆轰产物的快速混合,使铝粉在高温高压条件下不能获得更多的氧元素,从而不利于无氧燃烧阶段的充分释能。而对于这些问题,目前并未见到相关研究报道。因此,本研究制备了两种组分和尺寸均相同的同轴双元组合装药试样,其中一种试样含有薄壁铝隔层,通过爆轰波形扫描试验及圆筒试验分别对比两种试样的爆轰波形及圆筒比动能,并采用脉冲X射线观测爆轰过程中薄铝隔层的膨胀轨迹,从而系统分析铝隔层对组合装药爆轰性能的影响规律,以期为该装药的工艺设计及优化提供依据。
实验样品为同轴内外层组合圆柱体(如图1所示),每节药柱的尺寸均为ø50 mm×100 mm,内、外层装药均采用熔铸成型工艺制备。外层装药采用高爆速炸药DOL制备,内层装药采用高爆热炸药DRLU制备(配方及参数见表1),内、外层装药的质量比约为1。实验样品包含A和B两种,样品A中不含有铝隔层,内层装药的直径为35 mm;样品B中含有铝隔层,内层装药的直径为34 mm,铝隔层的壁厚为0.5 mm;当两种样品的长度相同时,样品B中的有效装药量相当于样品A的97.2%。
Explosive | Mass fraction | ρ/(g·cm–3) | DCJ/(km·s–1) | Q/(kJ·g–1) |
DOL | 30∶60∶5∶5 (DNTF∶HMX∶Al∶binder) | 1.84 | 8.65 | 6.56 |
DRLU | 15∶35∶20∶30 (DNAN∶RDX∶AP∶Al) | 1.88 | 6.84 | 8.19 |
组合装药爆轰波形演变至稳定状态需要较长的距离,这不仅与内、外层装药的爆速差有关,还受结构尺寸等因素的影响。本研究中仅需对比两种试样爆轰波形演变过程中的差异,其所获波形并不一定为稳态波形,因此只要求样品A和样品B的尺寸相同。采用一节ø50 mm×100 mm的药柱为实验主装药,药柱的起爆端粘接ø50 mm的平面透镜,使内、外层装药的起始波形相同,并通过SJZ-15型转镜式高速扫描相机获取药柱尾部端面的爆轰波形,实验布局如图2所示。扫描爆轰波形时,相机的光学狭缝通过高清晰反射镜对准主装药端面的直径,相机扫描速度设定为6 km/s。
图3为样品B的爆轰波形,其中虚线标识为铝隔层所对应的位置,不含有铝隔层的样品A的爆轰波形与样品B极为相似。结合图像放大比及相机的扫描速度可获得图3中波形的具体曲线数据。由于波形关于装药轴线对称,为了便于表示,图4中仅列出了轴心至装药半径R处的波形曲线(判读时,相邻数据点纵坐标的差值恒定)。图4中t = 0时刻为爆轰波最早到达药柱端面的时刻,该位置处于外层装药
图3所示的聚心爆轰波不仅能为内层装药中的铝粉提供更高压力和温度的无氧燃烧环境,还能促使外层装药的爆轰产物向内聚集,为铝粉提供更多的氧元素,使其释放出更多的能量[11],从而提升整体装药的驱动能力。因此,铝隔层是否会对内、外层装药爆轰产物造成隔离便显得尤为关键。本研究将通过脉冲X射线摄影技术对组合装药爆轰过程中铝隔层的运动状态进行观测。图5为该实验的布局示意。
图6为脉冲X射线观测样品B爆轰过程时所获底片,从中可以看出,此时该装药的爆轰波还未传播完毕,且铝隔层的轮廓较为光滑,未见明显碎渣(底片左侧边缘的竖向条纹为洗相过程中意外刮擦所致,且离铝隔层较远,故认为这不是铝隔层的碎片),因此可认为铝隔层此时破裂的可能性较小。为便于定量描述铝隔层的运动轨迹,设定装药轴向为x轴,原点为装药的起爆端,半径方向为y轴,则可获得铝隔层的膨胀轨迹,如图7所示。从图7中可以看出:
v=dydt=dyd(x0−xD)=−dydx⋅D=D⋅k |
(1) |
式中:D可近似取DOL炸药的爆速,即D ≈ 8.65 km/s,则v ≈ 2.2 km/s。此外,图7中
综合该实验的分析可以看出,铝隔层的径向膨胀速度为2.2 km/s时,其半径y由17.5 mm膨胀至30.0 mm时,未发现明显破裂。若根据爆轰产物相对比容
本研究采用圆筒试验表征装药的驱动性能,其装置如图8所示。圆筒壁的材料为TU1无氧铜,密度为8.93 g/cm3,内、外直径分别为50.0和60.2 mm;狭缝扫描位置距圆筒尾端约200 mm,相机扫描速度设定为1.5 km/s;电探针粘贴在装药截面的边缘处,可获得该组合装药的外层装药在圆筒内的平均爆速
rm−rm0=2∑j=1aj{(t+t0)−1bj[1−e−bj(t+t0)]} |
(2) |
式中:
Sample | D*/(km·s–1) | a1/(km·s–1) | b1/μs–1 | a2/(km·s–1) | b2/μs–1 | t0/μs |
A | 8.610 | 1.211 04 | 0.110 96 | 0.506 19 | 0.382 02 | 1.628 99 |
B | 8.624 | 1.119 78 | 0.111 27 | 0.570 49 | 0.421 29 | 1.441 05 |
根据表2中的数据可计算出圆筒质量中心面的质点速度
us=2D∗⋅sin[arctan(um/D)2] |
(3) |
式中:
υ=(riri0)2=r2m−(r2e0−r2i0)/2r2i0 |
(4) |
则可获得
从图9中可以看出,随着爆轰产物相对比容
(1)在该同轴双元组合装药中,内、外层装药间增设薄壁铝隔层后,装药的爆轰波形未发生明显改变,这可能是由于铝的冲击阻抗与炸药爆轰阻抗较为接近,使冲击波穿越铝隔层时未发生较强的反射效应所致。
(2)根据脉冲X射线摄影实验结果,该组合装药在爆轰过程中,铝隔层的径向膨胀速度为2.2 km/s时,其半径由17.5 mm膨胀至30.0 mm,未发现明显破裂,故可认为内层装药爆轰产物的相对比容小于3.0时,铝隔层能有效隔离内、外层装药的爆轰产物。
(3)当
[1] | LI Yan, CUI Xiaorong, LI Rui, WANG Quan, HU Minghang, SUN Rui, CHEN Yajing. Influence of Inorganic Salts on the Dissolution Temperature of Ammonium Nitrate and the Explosive Performance of Expanded Ammonium Nitrate Explosives[J]. Chinese Journal of High Pressure Physics, 2025, 39(4): 045102. doi: 10.11858/gywlxb.20240914 |
[2] | ZHU Zhengde, LIU Feng, KUANG Zhao, FU Jiakun. Influence of Silicon Nitride Content on Explosive Performance of Bulk Emulsion Explosive[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251031 |
[3] | CHEN Zhengyan, WU Hongbo, CAI Xinyuan, MA Chengshuai, XIE Shoudong. Effect of Aensitization Methods on Detonation Performance of Emulsion Explosive in Simulated Plateau Environment[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 045202. doi: 10.11858/gywlxb.20230838 |
[4] | ZHU Qunlong, WANG Quan, WANG Xuguang, LI Rui, TU Changchang, YANG Rui, ZHU Wenyan. Characterization and Performance of Nano-La2O3 Prepared by Detonation Method[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 043201. doi: 10.11858/gywlxb.20230643 |
[5] | YANG Rui, WANG Quan, XIE Shoudong, LI Rui, TU Changchang, XU Xiaomeng, LI Xiaochen. Deformation of Fixed Support Steel Plate under Explosion Load in Negative Pressure Environment[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054102. doi: 10.11858/gywlxb.20230685 |
[6] | ZHENG Xinying, LI Haitao, ZHANG Chi, LYU Yansong. Experimental Study on Load Characteristics of Underwater Explosion for an Emulsion Explosive[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 045101. doi: 10.11858/gywlxb.20220502 |
[7] | BAI Chunhua, ZHANG Chengjun, LIU Nan, YAO Ning. Experimental Study on the Effects of Ambient Temperature on Explosion Characteristics of Multiphase Mixtures[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045202. doi: 10.11858/gywlxb.20180648 |
[8] | LI Xuejiao, WANG Quan, MA Honghao, YANG Ming, SHEN Zhaowu, BI Zhixiong. Glass Microsphere Based Emulsion Explosive and Application in Explosive Welding[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035205. doi: 10.11858/gywlxb.20170651 |
[9] | WANG Mingye, HAN Zhiwei, LI Xi, WANG Boliang. Influence of Aluminum Particle Size on Explosion Performance and Thermal Stability of Thermobaric Explosive[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035201. doi: 10.11858/gywlxb.20170627 |
[10] | GONG Yue, HE Jie, YAN Shi-Long, CHENG Yang-Fan. Effect of Aluminum Particle Size on Thermal Decomposition Characteristics of Emulsion Matrix[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 148-154. doi: 10.11858/gywlxb.2017.02.006 |
[11] | WAN Xiao-Zhi, MA Hong-Hao, SHEN Zhao-Wu, CHEN Wei. A Comparative Analysis of Underwater Explosion Properties for High-Content Aluminum Foil and Aluminum Powder Explosives[J]. Chinese Journal of High Pressure Physics, 2016, 30(1): 42-48. doi: 10.11858/gywlxb.2016.01.007 |
[12] | CHENG Yang-Fan, WANG Quan, MIAO Guang-Hong, SHEN Zhao-Wu, YAN Shi-Long. Numerical Simulation on a Novel Dynamic Pressure Desensitization Device for Emulsion Explosives[J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 311-316. doi: 10.11858/gywlxb.2016.04.007 |
[13] | LIU Dan, SI Rong-Jun, LI Run-Zhi. Ambient Humidity Influence on Explosion Characteristics of Methane-Air Mixture[J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 307-312. doi: 10.11858/gywlxb.2015.04.011 |
[14] | LIN Mou-Jin, MA Hong-Hao, SHEN Zhao-Wu, FAN Zhi-Qiang. Underwater Detonation Behavior of Aluminum Fiber Explosive[J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 557-563. doi: 10.11858/gywlxb.2014.05.008 |
[15] | HAN Zhi-Wei, XIE Li-Feng, DENG Ji-Ping, WANG Dong, CHEN Ji-Yang, XIE Yi-Chao. Size-Control of Nanostructured Ceria Synthesized by Detonation Method[J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 585-590. doi: 10.11858/gywlxb.2014.05.012 |
[16] | HAN Zhi-Wei, XIE Li-Feng, DENG Ji-Ping, NI Ou-Qi, XIE Yi-Chao, CHEN Ji-Yang. Detonation Synthesis and Characterization of Nano-Ceria with Emulsion Explosives[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 319-323. doi: 10.11858/gywlxb.2014.03.009 |
[17] | CHENG Yang-Fan, MA Hong-Hao, SHEN Zhao-Wu. Detonation Characteristics of Emulsion Explosives Sensitized by MgH2[J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 45-50. doi: 10.11858/gywlxb.2013.01.006 |
[18] | LI Xiao-Jie, ZHAO Chun-Feng, YU Na, LUO Ning. Characteristic Curve Method for Movement of Flyer Driven by TNT and Emulsion Explosives with General Equation of State[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 462-468. doi: 10.11858/gywlxb.2012.04.016 |
[19] | TAN Duo-Wang, ZOU Li-Yong, ZHANG Guang-Sheng, HE Zhi, JIANG Yang. Detonation Shock Dynamics Calibration of JB-9014 Explosive at Low Temperature[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 475-480. doi: 10.11858/gywlxb.2012.04.018 |
[20] | ZHANG Yuan-Ping, CHI Jia-Chun, GONG Yan-Qing, WANG Guang-Jun. Experimental Study on Underwater Explosion Performance of Aluminized Explosive[J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 316-320 . doi: 10.11858/gywlxb.2010.04.013 |
Explosive | Mass fraction | ρ/(g·cm–3) | DCJ/(km·s–1) | Q/(kJ·g–1) |
DOL | 30∶60∶5∶5 (DNTF∶HMX∶Al∶binder) | 1.84 | 8.65 | 6.56 |
DRLU | 15∶35∶20∶30 (DNAN∶RDX∶AP∶Al) | 1.88 | 6.84 | 8.19 |
Sample | D*/(km·s–1) | a1/(km·s–1) | b1/μs–1 | a2/(km·s–1) | b2/μs–1 | t0/μs |
A | 8.610 | 1.211 04 | 0.110 96 | 0.506 19 | 0.382 02 | 1.628 99 |
B | 8.624 | 1.119 78 | 0.111 27 | 0.570 49 | 0.421 29 | 1.441 05 |
Explosive | Mass fraction | ρ/(g·cm–3) | DCJ/(km·s–1) | Q/(kJ·g–1) |
DOL | 30∶60∶5∶5 (DNTF∶HMX∶Al∶binder) | 1.84 | 8.65 | 6.56 |
DRLU | 15∶35∶20∶30 (DNAN∶RDX∶AP∶Al) | 1.88 | 6.84 | 8.19 |
Sample | D*/(km·s–1) | a1/(km·s–1) | b1/μs–1 | a2/(km·s–1) | b2/μs–1 | t0/μs |
A | 8.610 | 1.211 04 | 0.110 96 | 0.506 19 | 0.382 02 | 1.628 99 |
B | 8.624 | 1.119 78 | 0.111 27 | 0.570 49 | 0.421 29 | 1.441 05 |