REN Chaoyu, XUE Pengcheng, JIAO Xiong, WANG Genwei. Separation of Two SiO2 Nanoparticles under Ultrasonic Vibration[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 042401. doi: 10.11858/gywlxb.20180526
Citation: LIANG Mingyang, ZHI Xiaoqi, YU Yongli, XIAO You. Effect of Charge Defects on the Fast Cook-off Response Characteristics of Cast PBX Explosive Charge[J]. Chinese Journal of High Pressure Physics, 2025, 39(4): 045101. doi: 10.11858/gywlxb.20240893

Effect of Charge Defects on the Fast Cook-off Response Characteristics of Cast PBX Explosive Charge

doi: 10.11858/gywlxb.20240893
  • Received Date: 24 Sep 2024
  • Rev Recd Date: 22 Oct 2024
  • Available Online: 01 Apr 2025
  • Issue Publish Date: 05 Apr 2025
  • To study the effect of explosive charge defects on fast cook-off response characteristics, fast cook-off tests were conducted on type Ⅰ cook-off bomb (with defect-free charges) and type Ⅱ cook-off bomb (with defective charges). The results showed that the response time of type Ⅱ cook-off bomb (128 s) is shorter than that of type Ⅰ cook-off bomb (132 s), and the maximum shock wave overpressure at 5 m (62.7 kPa) is higher than that of type Ⅰ cook-off bomb (12.5 kPa). This indicates that the combustion of the type Ⅱ cook-off bomb was more intense than the defect-free type Ⅰ cook-off bomb after ignition, although both of them exhibit the same response level of burning reaction. Furthermore, a coupled computational model of pool fire and cook-off specimen was established to simulate the heating of the specimen in the flame using Fluent software. It is found that the closer the defect is to the charge surface, the higher local temperature at the defect, but it does not significantly affect the response time of explosive charges.

     

  • 随着21世纪社会快速发展,不同学科和领域对新型材料的小型化、高密度、高集成度等方面提出了更高的要求。在新型材料创新上,纳米材料起到了关键性作用[1]。然而纳米材料常常自发黏附在一起,大大降低了其纳米效应。如何获得分散性良好的纳米颗粒,充分发挥纳米材料的性能,成为目前纳米领域亟待解决的问题[2]

    根据是否接触,纳米颗粒分散方法可以分为两种:接触分离法和非接触式分离法。接触分离方法的操作是不连续的,或在操作中需要添加其他物质,可能影响颗粒的特性。使用最广泛的非接触式分离法是电泳法,但需要施加高电压,可能影响颗粒在电磁场中的特性,如导电性和磁性。相比之下, 非接触式方法显得更为有利,因为它在分离过程中不需要添加其他物质,不会产生污染,更重要的是可以实现连续操作,能保持颗粒的活性,以确保以后的正常使用。超声波法作为非接触式方法,不会改变材料原有的特性[3]

    超声波的波长短、频率高,具有能量高、穿透能力强、束射性和方向性好的特点。对于由超声波分散的颗粒,其密度和压缩比必须不同于周围介质的密度和压缩比,该特性使超声波分散法可以用来驱散带电或磁颗粒[3-4]

    超声波是能在弹性介质中以纵波方式进行传播的高频机械波,其频率f大于20 kHz。由超声波发生器将输入的交流电转化为高频交流电信号,再通过超声波换能器将高频电信号转换成高频机械振动,产生超声波[4]

    根据发射超声波的类型,可以将超声波分为脉冲波和连续波,本研究中施加给纳米颗粒的超声波为连续波。超声波的振动方程为

    X=Hsinft
    (1)

    式中:H为超声波的振幅,f为超声波的振动频率。

    超声波的传播速度为

    v=XtfHcosft
    (2)

    当超声波传播到某一系统时,其中质量为Δm的一小段的动能为

    Δwk=12Δmv2=12ρΔVv2
    (3)

    经计算得超声波的能量密度为

    ζ0=ΔwkΔV=12ρH2f2cos2ft
    (4)

    超声波的平均能量密度为

    ζ=1TT0ζ0dt=12ρH2f2
    (5)

    因此,超声波的平均能量密度ζ与其振幅的平方H2以及介质的密度ρ成正比,与振动周期T(T为振动频率f的倒数)的平方成反比。

    范德华力是分子间存在的一种静电相互作用,包括取向力、诱导力和色散力[5]。一般来说,色散力对原子和分子间的范德华力所做的贡献是最重要的。因为无论是极性分子之间、极性与非极性分子之间、非极性分子之间,它总是存在的。取向力和诱导力存在于极性分子之间或者极性与非极性分子之间,只有当分子偶极矩极大时,它们才变得更重要[6]

    范德华力所产生的势能比键能小1~2个数量级,而且是非定向和非饱和的。当两原子彼此紧密靠近、电子云相互重叠时,发生强烈排斥,排斥力与距离rn次方成正比;在原子或分子间不仅仅表现为斥力,还可能是引力,引力与距离r的6次方成正比。范德华势能可表示为[7]

    E(r)=BrnCr6
    (6)

    英国物理学家Lennard-Jones认为, 对于大多数物质, 常数n取值为12[6]。他在1924年提出了分子间范德华势能公式

    E(r)=Br12Cr6
    (7)

    也可以写为[7-9]

    E(r)=4ε[(σr)12(σr)6]
    (8)

    式中:ε为范德华势阱深度,σ为势能正好为零时的两体间距离。当范德华势能取最小值时,E(r)=-ε;当r=σ时,势能为零[10]

    对范德华势能公式求导可得范德华力公式

    F=E(r)r
    (9)

    Derjaguin于1934年提出了Derjaguin近似[5, 7, 11],即任意形状的两物体相距为D时所受到的范德华力可表示为

    F(D)=Df(x)dAxdxdx
    (10)

    式中:Ax表示距离为x时物体的横截面积,AxR2

    从Derjaguin近似出发,可以计算相距为D的半径分别为r1r2的两个实心球体之间的范德华力。如图 1所示,两个球之间的几何关系可以表示为

    {R22r1x1=2r2x2x=D+x1+x2=D+R22r1+r2r1r2dx=r1+r2r1r2RdR
    (11)
    图  1  几何关系
    Figure  1.  Schematic of geometric relations

    由(11)式可知

    dAx=2πRdR2πr1r2r1+r2dx
    (12)

    相距x的两个平面之间单位面积的范德华力可表示为

    f(x)=A45πx9A6πx3
    (13)

    将(11)式~(13)式代入(10)式可计算出两个球形物体之间的范德华力

    F(D)sphere=(A180D8A6D2)r1r2r1+r2
    (14)

    根据(9)式可得半径为r1r2的两个球形物体之间的范德华势能

    E(D)sphere=DF(D)spheredD=(A1260D7A6D)r1r2r1+r2
    (15)

    式中:A为引力Hamaker常数[6]A21ρ2,其中C=4εσ6ρ1ρ2分别为两个球形物体中分子的数量密度;A为斥力的Hamaker常数,它是类比于引力的Hamaker常数A得出的,A21ρ2,其中B=4εσ12

    取SiO2颗粒为研究对象,假设颗粒为刚性,且在空气中相互作用。SiO2颗粒之间的范德华力包括不同颗粒间Si原子的相互作用、不同颗粒间O原子的相互作用以及不同颗粒间Si-O原子的相互作用。因此,两个SiO2颗粒之间的范德华力是以上3种相互作用的总和。不同颗粒之间Si原子的相互作用(Si-Si)及不同颗粒之间O原子相互作用(O-O)的范德华势能参数[12]表 1所示。不同颗粒间Si-O原子的范德华势能参数根据(16)式[13]计算,SiO2颗粒之间的范德华力根据(17)式计算

    {εij=εiiεjjσij=σii+σjj2
    (16)
    F=3j=1Fj=3j=1(Aj180D8Aj6D2)r1r2r1+r2
    (17)
    表  1  Lennard-Jones势能参数
    Table  1.  Parameters of Lennard-Jones interaction potential
    Atom type of interactionσ/nmε/(10-20 J)
    Si-Si0.3304.3766
    O-O0.2750.1104
    下载: 导出CSV 
    | 显示表格

    式中:εiiσii为Si-Si相互作用势能参数,εjjσjj为O-O相互作用势能参数,εijσij为Si-O相互作用势能参数;F1表示Si-Si相互作用力总和,F2表示O-O相互作用力总和,F3表示Si-O相互作用力总和。如图 2所示,两个颗粒间的范德华力与弹簧力相似,当颗粒间距离发生变化时,范德华力也随之发生改变,不仅仅表现为吸引力,也可能表现为排斥力,正如弹簧中的弹力包括牵引力和挤压力两种。

    图  2  SiO2纳米颗粒运动模型
    Figure  2.  Motion model of SiO2 nanoparticles

    假设两个颗粒的初始状态是静止的平衡状态,即两个颗粒的范德华力为零,D0表示两颗粒的平衡距离。颗粒A的半径为r1,颗粒B的半径为r2。颗粒A位于坐标原点xA0=0,速度vA0=0;颗粒B位于xB0=D0+r2处,速度vB0=0。将超声波施加于颗粒A,使其以简谐振动(正弦)的形式在平衡位置振动。令颗粒间范德华力为零可计算得到SiO2颗粒的平衡距离,D0=0.185 nm。

    初始时,两颗粒处于静止平衡状态,颗粒A在超声波激励作用下发生振荡,随后颗粒B在范德华力作用下开始运动,以Δt=0.1 ps为时间步长,利用递推法计算i个Δt时间内颗粒A和颗粒B的位移x、速度v及加速度a,从而得出颗粒之间的距离随时间变化情况。为减少分子间长程相互作用的计算时间,通常范德华力的截断半径取2.5σ。当距离大于2.5σ后,范德华力作用很微弱,可以忽略不计[7]。本研究以颗粒之间的距离D≥1 nm作为颗粒分离标准。

    递推关系如下:颗粒A、颗粒B之间的范德华力表示为

    F(i)=3j=1Fj(i)=3j=1[Aj180D8(i)Aj6D2(i)]r1r2r1+r2
    (18)

    颗粒B的加速度为

    aB(i)=F(i)/mB
    (19)

    颗粒A的振动方程为

    xA(i)=Hsin(2πTΔti)
    (20)

    颗粒B的运动方程为

    xB(i)=D0+12aB(i)Δt2+r1+r2+vB(i1)Δt
    (21)

    颗粒A、颗粒B之间的距离为

    D(i+1)=xB(i)xA(i)
    (22)

    颗粒B的速度为

    vB(i)=aB(i)Δt+vB(i1)
    (23)

    利用MATLAB软件编写颗粒分离的程序,通过改变参数(颗粒粒径比、超声波振幅、周期及平均能量密度)计算颗粒A、颗粒B之间距离的变化情况,并分析计算结果。

    下面讨论颗粒粒径比η(η=r1/r2)、超声波振幅H、超声波周期T、超声波平均能量密度ζ对两个SiO2纳米颗粒分离的影响。

    选取两个SiO2球形颗粒为研究对象,取超声波振幅H=1 nm,超声波周期T=50 μs。改变两个颗粒的粒径比η,取颗粒B的半径r2=2 nm,颗粒A的半径r1=ηr2表 2所示为两个颗粒的分离时间。

    表  2  颗粒分离时间随粒径比η的变化关系
    Table  2.  Relationship of diameter ratio η and separation time of two particles
    ηSeparation time/ps
    0.1843
    0.5249
    1180
    5139
    1094
    下载: 导出CSV 
    | 显示表格

    图 3为不同粒径比η对应的颗粒分离情况。0~70 ps,颗粒A与颗粒B的距离变化很小,两个颗粒的振动接近同相位振动;随着时间的增长,两个颗粒之间距离发生快速变化;70~180 ps,两颗粒之间的距离随时间的增加而出现巨大波动,η值越大,分离越快。这表明大颗粒对小颗粒有极大的影响:颗粒A越大,其对颗粒B影响越大,分离越快;颗粒B越大,颗粒A对其影响越小,分离越慢。

    图  3  粒径比η对颗粒分离的影响
    Figure  3.  Influence of diameter ratio η on distance between two particles

    取粒径比η=1,超声波的周期T=50 μs,超声波振幅H在0.1~10 nm之间取值。表 3给出了两个颗粒的分离时间。

    表  3  颗粒分离时间随振幅H的变化关系
    Table  3.  Relationship of ultrasound amplitude H and separation time of two particles
    H/nmSeparation time/ps
    0.1167
    0.5168
    1181
    5164
    10156
    下载: 导出CSV 
    | 显示表格

    图 4为不同超声波振幅对应的颗粒分离情况。0~120 ps,两颗粒之间的距离变化很小,两个颗粒的振动接近同相位振动;120~200 ps,两颗粒之间的距离变化加快。当H=10 nm时两颗粒分离时间在5组数据中最小,为156 ps;当H=1 nm时两颗粒分离时间在5组数据中最大,为181 ps。

    图  4  超声波振幅H对颗粒分离的影响
    Figure  4.  Influence of ultrasound amplitude H on distance between two particles

    取粒径比η=1,超声波振幅H=1 nm,超声波周期包括0.1、1、10、100 μs 4组值。表 4给出了颗粒分离时间随周期的变化情况。

    表  4  颗粒分离时间随周期T变化关系
    Table  4.  Relationship of ultrasound period T and separation time of two particles
    T/μsSeparation time/ps
    0.199
    1139
    10164
    100168
    下载: 导出CSV 
    | 显示表格

    图 5为不同振动周期对应的颗粒分离情况。0~60 ps,两颗粒之间距离变化很小; 60 ps以后,两颗粒之间的距离随时间增加而发生剧烈变化。当T=100 μs时,颗粒分离时间为168 ps;当T=0.1 μs时,颗粒分离时间为99 ps。

    图  5  周期T对颗粒分离的影响
    Figure  5.  Impact of ultrasound period T on distance between two particles
    图  6  相同超声波平均能量密度ζ下振幅H及周期T对颗粒分离的影响
    Figure  6.  Impact of ultrasound amplitude and period on distance between two particles with the same average energy density ζ

    超声波的平均能量密度ζ与振幅的平方(H2)成正比,与周期的平方(T2)成反比,所以不考虑能量密度不同对颗粒分离产生的影响。假设平均能量密度为一个定值,改变超声波的振幅,得到颗粒分离时间与分离距离的关系曲线,如图 6所示,3条曲线重合,当t=168 ps时,两颗粒之间的距离达到1 nm。

    颗粒粒径比η,以及超声波的振幅H、周期T、平均能量密度ζ都会对SiO2纳米颗粒的分离产生影响。

    (1) 两颗粒分离时间随粒径比η(颗粒A与颗粒B的质量比)的增大而减小。

    (2) 对于超声波振幅,存在一个临界值Hc。当超声波振幅大于Hc时,颗粒分离随振幅的增大而变快;当超声波振幅小于Hc时,颗粒分离随振幅的减小而变快;当超声波振幅取Hc时,两颗粒之间的分离最慢。

    (3) 超声波周期T愈大,即超声波的振动频率愈小,两颗粒分离愈慢。

    (4) 保持平均能量密度ζ不变,两颗粒的分离时间不会随振幅或周期的改变而发生变化。

    目前只研究了超声波作用下两个纳米颗粒在空气中的分离,在未来的研究中,将考虑在液体黏度影响下纳米颗粒的分离。

  • [1]
    江鹏. 烤燃作用下PBX炸药的热分解及细观热损伤研究 [D]. 北京: 北京理工大学, 2016.

    JIANG P. Thermal decomposition and microstructure study of PBX explosive subjected to cook-off [D]. Beijing: Beijing Institute of Technology, 2016.
    [2]
    黄开书, 江涛, 吴欣欣, 等. 提高浇注PBX炸药装药品质技术途径 [J]. 兵工自动化, 2023, 42(10): 60–62. doi: 10.7690/bgzdh.2023.10.014

    HUANG K S, JIANG T, WU X X, et al. Technical approach to improve charging quality of cast PBX explosive [J]. Ordnance Industry Automation, 2023, 42(10): 60–62. doi: 10.7690/bgzdh.2023.10.014
    [3]
    CUENOT B, SHUM-KIVAN F, BLANCHARD S. The thickened flame approach for non-premixed combustion: principles and implications for turbulent combustion modeling [J]. Combustion and Flame, 2022, 239: 111702. doi: 10.1016/j.combustflame.2021.111702
    [4]
    WEI R C, WANG B W, HE Q Z, et al. An experimental study on aviation kerosene pool fire flame and thermal radiation [J]. Journal of Physics: Conference Series, 2022, 2263(1): 012018. doi: 10.1088/1742-6596/2263/1/012018
    [5]
    王帅, 智小琦, 贾秋琳, 等. 基于mass_flux法的炸药火烧试验与数值仿真 [J]. 兵器装备工程学报, 2020, 41(8): 1–6. doi: 10.11809/bqzbgcxb2020.08.001

    WANG S, ZHI X Q, JIA Q L, et al. Experiment and numerical simulation of explosive firing based on mass_flux method [J]. Journal of Ordnance Equipment Engineering, 2020, 41(8): 1–6. doi: 10.11809/bqzbgcxb2020.08.001
    [6]
    肖游, 智小琦, 王琦, 等. 火焰特征量对快速烤燃的影响 [J]. 高压物理学报, 2022, 36(5): 055201. doi: 10.11858/gywlxb.20220557

    XIAO Y, ZHI X Q, WANG Q, et al. Influence of flame characteristics on fast cook-off [J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055201. doi: 10.11858/gywlxb.20220557
    [7]
    王洪波, 王旗华, 卢永刚, 等. PBX炸药细观孔洞缺陷对其冲击点火特性的影响 [J]. 火炸药学报, 2015, 38(5): 31–36. doi: 10.14077/j.issn.1007-7812.2015.05.006

    WANG H B, WANG Q H, LU Y G, et al. Effect of Meso-defect holes on the shock-to-ignition characteristics of PBX explosives [J]. Chinese Journal of Explosives & Propellants, 2015, 38(5): 31–36. doi: 10.14077/j.issn.1007-7812.2015.05.006
    [8]
    周婷婷, 楼建锋. 含孔洞炸药晶体HMX冲击响应的分子动力学模拟 [J]. 含能材料, 2024, 32(1): 65–75. doi: 10.11943/CJEM2023167

    ZHOU T T, LOU J F. Molecular dynamic studies on the shock responses of energetic crystal HMX with cylindrical voids [J]. Chinese Journal of Energetic Materials, 2024, 32(1): 65–75. doi: 10.11943/CJEM2023167
    [9]
    GROSS M L, HEDMAN T D, MEREDITH K V. Considerations for fast cook-off simulations [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(6): 1036–1043. doi: 10.1002/prep.201500253
    [10]
    王志富. 有装药缺陷的凝聚相炸药烤燃的数值模拟 [D]. 淮南: 安徽理工大学, 2020.

    WANG Z F. Numerical simulation of the burning of defective condensed phase explosives [D]. Huainan: Anhui University of Science and Technology, 2020.
    [11]
    PETERS N. Turbulent combustion [M]. Cambridge: Cambridge University Press, 2000.
    [12]
    Ansys Inc. Fluent A.: ANSYS fluent theory guide [Z]. USA, 2013, 15317: 724–746.
    [13]
    ATTAR A A, POURMAHDIAN M, ANVARIPOUR B. Experimental study and CFD simulation of pool fires [J]. International Journal of Computer Applications, 2013, 70(11): 9–15. doi: 10.5120/12004-5790
    [14]
    任玉新, 陈海昕. 计算流体力学基础 [M]. 北京: 清华大学出版社, 2006.

    REN Y X, CHEN H X. Fundamentals of computational fluid dynamics [M]. Beijing: Tsinghua University Press, 2006.
    [15]
    付淑青. 国产航空煤油多组分替代燃料的燃烧反应机理研究 [D]. 沈阳: 沈阳航空航天大学, 2020.

    FU S Q. Study on combustion reaction mechanism of domestic aviation kerosene multi-component surrogate fuels [D]. Shenyang: Shenyang Aerospace University, 2020.
    [16]
    黄生洪, 徐胜利, 刘小勇. 煤油超燃冲压发动机两相流场数值研究(Ⅲ)煤油在超燃流场中的多步化学反应特征 [J]. 推进技术, 2005, 26(2): 101–105. doi: 10.3321/j.issn:1001-4055.2005.02.002

    HUANG S H, XU S L, LIU X Y. Combustion flow of kerosene-fueled scramjet with 3D cavity (Ⅲ) multi-step chemistry characteristics of kerosene [J]. Journal of Propulsion Technology, 2005, 26(2): 101–105. doi: 10.3321/j.issn:1001-4055.2005.02.002
    [17]
    KUNDU K, PENKO P, YANG S. Reduced reaction mechanisms for numerical calculations in combustion of hydrocarbon fuels [C]//36th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 1998.
    [18]
    曾娇. 开放空间航空煤油池火燃烧数值模拟 [D]. 哈尔滨: 哈尔滨工程大学, 2016.

    ZENG J. Numerical simulation of aviation fuel pool fire in open air [D]. Harbin: Harbin Engineering University, 2016.
    [19]
    傅献彩. 普通高等教育十五国家级规划教材: 物理化学(上) [M]. 北京: 高等教育出版社, 2005: 99–103.
  • Relative Articles

    [1]DONG Zelin, QU Kepeng, HU Xueyao, XIAO Wei, WANG Yixin. Cook-Off Characteristics of HMX-Based Pressed Charges with Different Sizes[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 025102. doi: 10.11858/gywlxb.20230757
    [2]XIAO You, ZHI Xiaoqi, WANG Qi, FAN Xinghua. Characteristics and Mechanism of Slow Cook-off of Composite Explosive Charges[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025201. doi: 10.11858/gywlxb.20210871
    [3]LIU Runze, WANG Xinjie, LIU Ruifeng, DUAN Zhuoping, HUANG Fenglei. Cook-off Test and Numerical Simulation of HMX-Based Cast Explosive Containing AP[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055202. doi: 10.11858/gywlxb.20220538
    [4]XIAO You, ZHI Xiaoqi, WANG Qi, YU Yongli, FAN Xinghua. Influence of Flame Characteristics on Fast Cook-off[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055201. doi: 10.11858/gywlxb.20220557
    [5]XU Rui, ZHI Xiaoqi, WANG Shuai. Influence of Venting Structure on the Cook-off Response Intensity of Composition B[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035201. doi: 10.11858/gywlxb.20200657
    [6]BAI Hui, HUI Hu, YANG Bin, KONG Fang. Strain Response and Analysis of Pressure Vessels with Small Delamination Defects[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054203. doi: 10.11858/gywlxb.20210717
    [7]BAI Hui, HUI Hu, YANG Bin, KONG Fang. Mechanical Behavior Analysis of Composite Shell with Fracture Defect[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034205. doi: 10.11858/gywlxb.20200649
    [8]SONG Lubin, GUO Zhangxin, LI Zhonggui, LUAN Yunbo, ZHAO Dan, ZHANG Qi. Effect of Defective Graphene on Mechanical Properties of Reinforced Resin Matrix Composites[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 064101. doi: 10.11858/gywlxb.20180586
    [9]ZHANG Ming, GAO Yonghong, YANG Yue, SUN Jiangjun, WAN Qinghua, SUN Miao, ZHANG Wei. Effect of Impact Points on Interfering Jets in Reactive Armor of Double-Wedge Charges[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 065109. doi: 10.11858/gywlxb.20180577
    [10]YANG Xiao, ZHI Xiao-Qi, YANG Bao-Lang, LI Juan-Juan. Influence of Charge Structure on the Cook-off Temperature Distribution of Solid Rocket Motor[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 433-442. doi: 10.11858/gywlxb.2017.04.012
    [11]CHENG Jin-Ming, FU Hua, YE Yan, CAO Yu-Dong, YANG Qing-Guo. Diagnosis of Quasi-Static Evolution of Defects in Explosives Using X-Ray In-Line Phase-Contrast Imaging[J]. Chinese Journal of High Pressure Physics, 2016, 30(5): 353-357. doi: 10.11858/gywlxb.2016.05.001
    [12]XUE Tao, ZHOU Xian-Ming, LI Jia-Bo, ZENG Xiao-Long, YE Su-Hua, HUANG Jin, LI Jun, DAI Cheng-Da. Real-Time Absorption Spectrum Measurements of Deformation-Induced Point Defects in Single Crystal MgO[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 691-698. doi: 10.11858/gywlxb.2014.06.008
    [13]HE Lin, YIN Jun. Effects of the Vacancy Point-Defect on Electronic Structure and Optical Properties of Diamond under High Pressure[J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 802-806. doi: 10.11858/gywlxb.2013.06.002
    [14]TIAN Zhan-Dong, ZHANG Zhen-Yu, LU Fang-Yun, ZHAO Jian-Heng, TAN Fu-Li. One-Dimensional Model and Calculation for Fast Cook-off of RDX[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 367-371. doi: 10.11858/gywlxb.2013.03.008
    [15]ZHANG Xin-Chun, LIU Ying. Effect of Defects in-Plane of Metal Honeycomb on Its Dynamic Impact Properties[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 645-652. doi: 10.11858/gywlxb.2012.06.008
    [16]JIN Shan, ZHANG Shi-Wen, LONG Jian-Hua. Experimental Study on the Influences of Defects on Expanding Fracture of a Metal Cylinder[J]. Chinese Journal of High Pressure Physics, 2011, 25(2): 188-192 . doi: 10.11858/gywlxb.2011.02.017
    [17]LI Yan, GU Qian-Qian, QIU Dong-Hua, PENG Dong-Jin, GUAN Qing-Feng. Texture and Structural Defect Evolution of Pure Nickel Subjected to High-Current Pulse Electron Beam Irradiation[J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 461-466 . doi: 10.11858/gywlxb.2010.06.010
    [18]ZHENG Fan-Lei, SUI Yu, XU Da-Peng, SU Wen-Hui, GUO Ying-Huan, YANG Hua, WANG Yun-Yu. The Effect of High Pressure on the Defect Structure inside La0.7Sr0.3MnO3 Nanosolids[J]. Chinese Journal of High Pressure Physics, 1997, 11(3): 209-214 . doi: 10.11858/gywlxb.1997.03.008
    [19]SUI Yu, ZHENG Fan-Lei, XU Da-Peng, SU Wen-Hui, GUO Ying-Huan, YANG Hua, WANG Yun-Yu. The Effect of High Pressure on the Defect Structure in the Nanocomposite Oxide Materials[J]. Chinese Journal of High Pressure Physics, 1997, 11(4): 245-249 . doi: 10.11858/gywlxb.1997.04.002
    [20]YANG Guo-Wei. The Nucleation Mechanism of Substrates Surface Defects in Low Pressure Vapor Deposition of Diamond Thin Films[J]. Chinese Journal of High Pressure Physics, 1994, 8(3): 229-236 . doi: 10.11858/gywlxb.1994.03.012
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 37.5 %FULLTEXT: 37.5 %META: 54.2 %META: 54.2 %PDF: 8.3 %PDF: 8.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 100.0 %其他: 100.0 %其他

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(3)

    Article Metrics

    Article views(13) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return