Citation: | LI Yishuo, WANG Wei, XU Zhaowei, ZHANG Congkun, ZHANG Zhonghao, ZHANG Qiang. Close-Range Blast Resistance and Analytical Methods of Polyurea Coated Masonry Infill Walls with Built-in Tie Reinforcement[J]. Chinese Journal of High Pressure Physics, 2025, 39(3): 034202. doi: 10.11858/gywlxb.20240892 |
[1] |
李利莎, 杜建国, 张洪海, 等. 爆炸冲击震动对砖墙破坏作用的数值模拟 [J]. 爆炸与冲击, 2015, 35(4): 459–466. doi: 10.11883/1001-1455(2015)04-0459-08
LI L S, DU J G, ZHANG H H, et al. Numerical simulation of damage of brick wall subjected to blast shock vibration [J]. Explosion and Shock Waves, 2015, 35(4): 459–466. doi: 10.11883/1001-1455(2015)04-0459-08
|
[2] |
曾繁, 肖桂仲, 冯晓伟, 等. 砌体结构长脉宽爆炸荷载损伤等级评估方法 [J]. 爆炸与冲击, 2021, 41(10): 127–137. doi: 10.11883/bzycj-2020-0399
ZENG F, XIAO G Z, FENG X W, et al. A damage assessment method for masonry structures subjected to long duration blast loading [J]. Explosion and Shock Waves, 2021, 41(10): 127–137. doi: 10.11883/bzycj-2020-0399
|
[3] |
WANG W, WEI G S, WANG X, et al. Structural damage assessment of RC slab strengthened with POZD coated steel plate under contact explosion [J]. Structures, 2023, 48: 31–39. doi: 10.1016/j.istruc.2022.12.090
|
[4] |
WANG W, YANG G R, YANG J C, et al. Experimental and numerical research on reinforced concrete slabs strengthened with POZD coated corrugated steel under contact explosive load [J]. International Journal of Impact Engineering, 2022, 166: 104256. doi: 10.1016/j.ijimpeng.2022.104256
|
[5] |
CHEN D, WU H, FANG Q, et al. A nonlinear visco-hyperelastic model for spray polyurea and applications [J]. International Journal of Impact Engineering, 2022, 167: 104265. doi: 10.1016/j.ijimpeng.2022.104265
|
[6] |
CHEN D, WU H, WEI J S, et al. Nonlinear visco-hyperelastic tensile constitutive model of spray polyurea within wide strain-rate range [J]. International Journal of Impact Engineering, 2022, 163: 104184. doi: 10.1016/j.ijimpeng.2022.104184
|
[7] |
WANG J G, REN H Q, WU X Y, et al. Blast response of polymer-retrofitted masonry unit walls [J]. Composites Part B: Engineering, 2017, 128: 174–181. doi: 10.1016/j.compositesb.2016.02.044
|
[8] |
ZHU H J, WANG X, WANG Y T, et al. Damage behavior and assessment of polyurea sprayed reinforced clay brick masonry walls subjected to close-in blast loads [J]. International Journal of Impact Engineering, 2022, 167: 104283. doi: 10.1016/j.ijimpeng.2022.104283
|
[9] |
ZHU H J, LUO X N, JI C, et al. Strengthening of clay brick masonry wall with spraying polyurea for repeated blast resistance [J]. Structures, 2023, 53: 1069–1091. doi: 10.1016/j.istruc.2023.05.004
|
[10] |
ZHANG Y, HU J H, ZHAO W D, et al. Numerical simulation of the blast resistance of SPUA retrofitted CMU masonry walls [J]. Buildings, 2023, 13(2): 446. doi: 10.3390/buildings13020446
|
[11] |
SANTOS A P, CHIQUITO M, CASTEDO R, et al. Experimental and numerical study of polyurea coating systems for blast mitigation of concrete masonry walls [J]. Engineering Structures, 2023, 284: 116006. doi: 10.1016/j.engstruct.2023.116006
|
[12] |
CHEN D, WU H, FANG Q. Simplified micro-model for brick masonry walls under out-of-plane quasi-static and blast loadings [J]. International Journal of Impact Engineering, 2023, 174: 104529. doi: 10.1016/j.ijimpeng.2023.104529
|
[13] |
Methodology manual for the single degree of freedom blast effects design spreadsheets [R]. PDC-TR 06-01, US Army Corps of Engineers, 2008.
|
[14] |
Structures to resist the effects of accidental explosions [R]. UFC 3-340-02, Washington DC: US Department of Defence, 2008.
|
[15] |
许林峰, 陈力, 李展, 等. 聚脲加固砖填充墙抗爆性能的试验和分析方法研究 [J]. 爆炸与冲击, 2022, 42(7): 126–137. doi: 10.11883/bzycj-2021-0332
XU L F, CHEN L, LI Z, et al. Experimental and analytical study on blast resistance performance of brick infill walls strengthened with polyuria [J]. Explosion and Shock Waves, 2022, 42(7): 126–137. doi: 10.11883/bzycj-2021-0332
|
[16] |
YANG C Z, JIA X, HUANG Z X, et al. Damage of full-scale reinforced concrete beams under contact explosion [J]. International Journal of Impact Engineering, 2022, 163: 104180. doi: 10.1016/j.ijimpeng.2022.104180
|
[17] |
RAMAN S, NGO T, LU J H, et al. Experimental investigation on the tensile behavior of polyurea at high strain rates [J]. Materials & Design, 2013, 50: 124–129.
|
[18] |
汪维. 钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究[D]. 长沙: 国防科学技术大学, 2014.
WANG W. Study on damage effects and assessments method of reinforced concrete structural members under blast loading [D]. Changsha: National University of Defense Technology, 2014.
|
[19] |
陈力, 方秦, 还毅, 等. 爆炸荷载作用下钢筋混凝土梁板结构的面力效应 [J]. 工程力学, 2010, 27(8): 156–163.
CHEN L, FANG Q, HUAN Y, et al. Membrane action on reinforced concrete beam-slab structures subjected to blast loads [J]. Engineering Mechanics, 2010, 27(8): 156–163.
|
[20] |
WU G, JI C, WANG X, et al. Blast response of clay brick masonry unit walls unreinforced and reinforced with polyurea elastomer [J]. Defence Technology, 2022, 18(4): 643–662. doi: 10.1016/j.dt.2021.03.004
|
[1] | SUN Yan-Yun, LIU Fu-Sheng, ZHANG Ming-Jian, XU Li-Hua. Three-Body Interactions and Shock Compression Properties of Condensed Nitrogen[J]. Chinese Journal of High Pressure Physics, 2009, 23(2): 137-142 . doi: 10.11858/gywlxb.2009.02.010 |
[2] | TAN Hua, HAN Jun-Wan, WANG Xiao-Jiang, SU Lin-Xiang, LIU Li, LIU Jiang, CUI Ling. Explosive Shock Synthesis of Wurtzite Type Boron Nitride[J]. Chinese Journal of High Pressure Physics, 1991, 5(4): 241-253 . doi: 10.11858/gywlxb.1991.04.001 |
[3] | HE Hong-Liang, JIN Xiao-Gang, CHEN Pan-Sen, WANG Wen-Kui. Experimental Studies on the Crystallization of Amorphous Fe40Ni40P12B8 Alloy under Shock Loading[J]. Chinese Journal of High Pressure Physics, 1989, 3(3): 211-220 . doi: 10.11858/gywlxb.1989.03.006 |
[4] | FU Shi-Qin, JIN Xiao-Gang, CHEN Pan-Sen. Studies on the Shock Adiabatics and Equation-of-State of Nandan Iron Meteorite[J]. Chinese Journal of High Pressure Physics, 1989, 3(3): 226-233 . doi: 10.11858/gywlxb.1989.03.008 |
[5] | GU Cheng-Gang, JING Fu-Qian, XIE Pan-Hai, WANG Jin-Gui. Resistivity and Hugoniot Measurements of Polytetrofluoroethylene (Teflon) under Shock Compression[J]. Chinese Journal of High Pressure Physics, 1989, 3(1): 31-41 . doi: 10.11858/gywlxb.1989.01.005 |
[6] | CHEN Xu, JIN Xiao-Gang, YANG Mu-Song. Experimental Studies of Hugoniot for Powder Mixture of BaCO3 and TiO2 and Shock Wave Synthesis of BaTiO3[J]. Chinese Journal of High Pressure Physics, 1989, 3(1): 67-77 . doi: 10.11858/gywlxb.1989.01.009 |
[7] | ZHANG En-Guan. Bimetallic-Junction Shock Pressure Sensors[J]. Chinese Journal of High Pressure Physics, 1989, 3(1): 85-92 . doi: 10.11858/gywlxb.1989.01.011 |
[8] | HU Jin-Biao, JING Fu-Qian, CHENG Ju-Xin. Sound Velocities at High Pressures and Shock-Melting of Copper[J]. Chinese Journal of High Pressure Physics, 1989, 3(3): 187-197 . doi: 10.11858/gywlxb.1989.03.003 |
[9] | HAN Chang-Sheng. A Semi-Empirical Equation for Estimating the Micro-Jet Ejection from Shocked Free-Surface[J]. Chinese Journal of High Pressure Physics, 1989, 3(3): 234-240 . doi: 10.11858/gywlxb.1989.03.009 |
[10] | WANG Gui-Chao, YU Quan-You, Lü Xiu-Sheng, WANG Da-Quan. An Instantaneous Optical Pyrometer with Six Channels for the Shock Temperature Measurement in Materials[J]. Chinese Journal of High Pressure Physics, 1988, 2(3): 277-284 . doi: 10.11858/gywlxb.1988.03.012 |
[11] | TAN Xian-Xiang, HUANG F. A High Speed Schlieren System for Observing the Mass-Ejection Events from Shocked Metallic Free Surface[J]. Chinese Journal of High Pressure Physics, 1988, 2(2): 171-173 . doi: 10.11858/gywlxb.1988.02.012 |
[12] | GU Cheng-Gang, XIE Pan-Hai, WANG Jin-Gui, JING Fu-Qian. An Improvement on Resistance Measuring Technique of Insulant under Shock Compression[J]. Chinese Journal of High Pressure Physics, 1988, 2(4): 340-345 . doi: 10.11858/gywlxb.1988.04.008 |
[13] | LIN Qi-Wen, YUAN Wan-Zong, WANG Wei-Jun. Investigation on the Match of Ferroelectric Explosive-Electric Transducers[J]. Chinese Journal of High Pressure Physics, 1988, 2(2): 137-145 . doi: 10.11858/gywlxb.1988.02.007 |
[14] | MA Min-Xun, GU Yuan, WANG Yong-Gang. An One-Dimensional Characteristic Method for Evaluating the Enhancement and Decay of Shock Waves Driven by Laser Pulses[J]. Chinese Journal of High Pressure Physics, 1988, 2(1): 79-84 . doi: 10.11858/gywlxb.1988.01.011 |
[15] | JIN Xiao-Gang, LIU Quan-Zhong, YANG Mu-Song, QIN Dao-Kai, XIAO Xue-Zheng. Shock Compression Measurement for 2169 Steel at 2 TPa[J]. Chinese Journal of High Pressure Physics, 1988, 2(1): 17-21 . doi: 10.11858/gywlxb.1988.01.003 |
[16] | TANG Wen-Hui, ZHANG Ruo-Qi, CHEN Xue-Fang. Experimental Studies on the Attenuation of Shock Waves in LY12-M Aluminum[J]. Chinese Journal of High Pressure Physics, 1988, 2(3): 218-226 . doi: 10.11858/gywlxb.1988.03.004 |
[17] | YU Wan-Rui, LIU Ge-San. Molecular Dynamic Investigation of Shock Waves in the Solid[J]. Chinese Journal of High Pressure Physics, 1988, 2(1): 73-78 . doi: 10.11858/gywlxb.1988.01.010 |
[18] | GU Yuan, WANG Yong-Gang, MAO Chu-Sheng, NI Yuan-Long, WU Feng-Chun, MA Min-Xun. Preliminary Experiments on the Equation of State of Materials at High-Pressure Produced by Laser Driven Shock Waves[J]. Chinese Journal of High Pressure Physics, 1988, 2(2): 165-170 . doi: 10.11858/gywlxb.1988.02.011 |
[19] | BAO Zhong-Xing, GU Hui-Cheng, ZHANG Zhi-Ting. Compressibility and Phase Transition of PZT-95/5 Ferroelectric Ceramics at High Pressure[J]. Chinese Journal of High Pressure Physics, 1987, 1(1): 93-96 . doi: 10.11858/gywlxb.1987.01.013 |
[20] | WANG Ke-Gang, DONG Lian-Ke, LONG Qi-Wei. Gauge Field Theory of the Breaking Criterion of Materials Subjected to Intensive Shock Loading[J]. Chinese Journal of High Pressure Physics, 1987, 1(2): 110-120 . doi: 10.11858/gywlxb.1987.02.003 |