Volume 39 Issue 2
Apr 2025
Turn off MathJax
Article Contents
SU Qiqi, LI Lei, LI Jun, HU Jianbo, GENG Huayun, LIU Lei. Polymers at High Pressures and High Temperatures: Advances in Equation of State and Phase Transition Investigations[J]. Chinese Journal of High Pressure Physics, 2025, 39(2): 021301. doi: 10.11858/gywlxb.20240863
Citation: SU Qiqi, LI Lei, LI Jun, HU Jianbo, GENG Huayun, LIU Lei. Polymers at High Pressures and High Temperatures: Advances in Equation of State and Phase Transition Investigations[J]. Chinese Journal of High Pressure Physics, 2025, 39(2): 021301. doi: 10.11858/gywlxb.20240863

Polymers at High Pressures and High Temperatures: Advances in Equation of State and Phase Transition Investigations

doi: 10.11858/gywlxb.20240863
  • Received Date: 26 Jul 2024
  • Rev Recd Date: 03 Sep 2024
  • Accepted Date: 03 Sep 2024
  • Available Online: 13 Jan 2025
  • Issue Publish Date: 03 Apr 2025
  • Polymers are one of the most widely used materials in modern society. The interest of applying polymers under extreme conditions (high pressure and high temperature) is ever increasing. However, our knowledge of the equation of state (EOS) and phase transition of polymers at high pressures and high temperatures is extremely limited, which prevents their applications in broad fields. Because of their mixed phases and their hierarchical structures, investigation on the structures and properties of polymers at extreme conditions is a big challenge to date. In this short review, we summarize the recently published studies on the EOS and phase transition of polymers at extreme conditions. We point out the challenges faced and the limitations of the experimental techniques used, which is expected to be useful for the investigations of the EOS and phase transition of polymers in the future.

     

  • loading
  • [1]
    MISHRA M. Encyclopedia of polymer applications: 3 volume set [M]. Boca Raton: CRC Press, 2019.
    [2]
    COLCLOUGH M E, DESAI H, MILLAR R W, et al. Energetic polymers as binders in composite propellants and explosives [J]. Polymers for Advanced Technologies, 1994, 5(9): 554–560. doi: 10.1002/pat.1994.220050914
    [3]
    XIAO Y C, XIAO X D, XIONG Y Y, et al. Mechanical behavior of a typical polymer bonded explosive under compressive loads [J]. Journal of Energetic Materials, 2023, 41(3): 378–410. doi: 10.1080/07370652.2021.1980151
    [4]
    WOODS H, BODDORFF A, EWALDZ E, et al. Rheological considerations for binder development in direct ink writing of energetic materials [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(1): 26–35. doi: 10.1002/prep.201900159
    [5]
    HUANG B B, XUE Z H, FU X L, et al. Advanced crystalline energetic materials modified by coating/intercalation techniques [J]. Chemical Engineering Journal, 2021, 417: 128044. doi: 10.1016/j.cej.2020.128044
    [6]
    AGRAWAL J P, DODKE V S. Some novel high energy materials for improved performance [J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2021, 647(19): 1856–1882.
    [7]
    ABBOTT A, BRANCH B, BROWN E N, et al. The dynamic response of polymers interrogated by 3rd generation X-ray light source: LA-UR-19-29436 [R]. Los Alamos: Los Alamos National Laboratory, 2019.
    [8]
    CARTER W J, MARSH S P. Hugoniot equation of state of polymers: LA-13006-MS [R]. Los Alamos: Los Alamos National Laboratory, 1995.
    [9]
    COE J D, BROWN E, CADY C M, et al. Equation of state and damage in polyethylene: LA-UR-17-29234 [R]. Los Alamos: Los Alamos National Laboratory, 2019.
    [10]
    DATTELBAUM D M, SHEFFIELD S, MCGRANE S D, et al. First reactions: understanding chemistry behind the shock front: LA-UR-12-25050 [R]. Los Alamos: Los Alamos National Laboratory, 2012.
    [11]
    国家自然科学基金委员会, 中国科学院. 中国学科发展战略(上): 软凝聚态物理学 [M]. 北京: 科学出版社, 2020.
    [12]
    BRIDGMAN P W. Linear compressions to 30 000 kg/cm2, including relatively incompressible substances [J]. Proceedings of the American Academy of Arts and Sciences, 1949, 77(6): 189–234. doi: 10.2307/20023541
    [13]
    WUNDERLICH B, ARAKAWA T. Polyethylene crystallized from the melt under elevated pressure [J]. Journal of Polymer Science: Part A: General Papers, 1964, 2(8): 3697–3706. doi: 10.1002/pol.1964.100020828
    [14]
    WARD I M. Mechanical properties of solid polymers [M]. 2nd ed. New York: John Wiley, 1983: 135-166.
    [15]
    KRAUS D, VORBERGER J, PAK A, et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions [J]. Nature Astronomy, 2017, 1(9): 606–611. doi: 10.1038/s41550-017-0219-9
    [16]
    KRAUS D, HARTLEY N J, FRYDRYCH S, et al. High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion [J]. Physics of Plasmas, 2018, 25(5): 056313. doi: 10.1063/1.5017908
    [17]
    HE Z Y, RÖDEL M, LÜTGERT J, et al. Diamond formation kinetics in shock-compressed C-H-O samples recorded by small-angle X-ray scattering and X-ray diffraction [J]. Science Advances, 2022, 8(35): eabo0617. doi: 10.1126/sciadv.abo0617
    [18]
    朱诚身. 聚合物结构分析 [M]. 2版. 北京: 科学出版社, 2010.
    [19]
    GUO Q P. Polymer morphology: principles, characterization, and processing [M]. Hoboken: John Wiley & Son, 2016.
    [20]
    ALS-NIELSEN J, MCMORROW D. Elements of modern X-ray physics [M]. 2nd ed. Chichester: John Wiley & Sons, 2011.
    [21]
    KAO C C. Challenges and opportunities for the next decade of XFELs [J]. Nature Reviews Physics, 2020, 2(7): 340–341. doi: 10.1038/s42254-020-0196-2
    [22]
    LIU L. Synthesis and tuning of multifunctional materials at high pressure [D]. Uppsala: Acta Universitatis Upsaliensis, 2020.
    [23]
    DREWITT J W E. Liquid structure under extreme conditions: high-pressure X-ray diffraction studies [J]. Journal of Physics: Condensed Matter, 2021, 33(50): 503004. doi: 10.1088/1361-648X/ac2865
    [24]
    DUBROVINSKY L, KHANDARKHAEVA S, FEDOTENKO T, et al. Materials synthesis at terapascal static pressures [J]. Nature, 2022, 605(7909): 274–278. doi: 10.1038/s41586-022-04550-2
    [25]
    TATENO S, HIROSE K, OHISHI Y, et al. The structure of iron in Earth's inner core [J]. Science, 2010, 330(6002): 359–361. doi: 10.1126/science.1194662
    [26]
    SHEN G Y, MAO H K. High-pressure studies with X-rays using diamond anvil cells [J]. Reports on Progress in Physics, 2017, 80(1): 016101. doi: 10.1088/1361-6633/80/1/016101
    [27]
    SINCLAIR N W, TURNEAURE S J, WANG Y, et al. The fast multi-frame X-ray diffraction detector at the dynamic compression sector [J]. Journal of Synchrotron Radiation, 2021, 28(4): 1216–1228. doi: 10.1107/S1600577521003775
    [28]
    BROEGE D, FOCHS S, BRENT G, et al. The dynamic compression sector laser: a 100-J UV laser for dynamic compression research [J]. Review of Scientific Instruments, 2019, 90(5): 053001. doi: 10.1063/1.5088049
    [29]
    HUBER R C, WATKINS E B, DATTELBAUM D M, et al. In situ X-ray diffraction of high density polyethylene during dynamic drive: polymer chain compression and decomposition [J]. Journal of Applied Physics, 2021, 130(17): 175901. doi: 10.1063/5.0057439
    [30]
    BOETTGER J C, JOHNSON J D. SESAME equation of state number 8020: polyetheretherketone (PEEK): LA-12684-MS [R]. Los Alamos: Los Alamos National Laboratory, 1993.
    [31]
    MILLETT J C F, BOURNE N K, GRAY III G T. The response of polyether ether ketone to one-dimensional shock loading [J]. Journal of Physics D: Applied Physics, 2004, 37(6): 942–947. doi: 10.1088/0022-3727/37/6/021
    [32]
    ROBERTS A, APPLEBY-THOMAS G J, HAZELL P. Experimental determination of Grüneisen gamma for polyether ether ketone (PEEK) using the shock-reverberation technique [J]. AIP Conference Proceeding, 2012, 1426(1): 824–827.
    [33]
    MAERZKE K A, COE J D, TICKNOR C, et al. Equations of state for polyethylene and its shock-driven decomposition products [J]. Journal of Applied Physics, 2019, 126(4): 045902. doi: 10.1063/1.5099371
    [34]
    HUBER R C, PETERSON J, COE J D, et al. Polysulfone shock compressed above the decomposition threshold: velocimetry and modeling of two-wave structures [J]. Journal of Applied Physics, 2020, 127(10): 105902. doi: 10.1063/1.5124252
    [35]
    BARRIOS M A, HICKS D G, BOEHLY T R, et al. High-precision measurements of the equation of state of hydrocarbons at 1–10 Mbar using laser-driven shock waves [J]. Physics of Plasmas, 2010, 17(5): 056307. doi: 10.1063/1.3358144
    [36]
    LÜTGERT J, VORBERGER J, HARTLEY N J, et al. Measuring the structure and equation of state of polyethylene terephthalate at megabar pressures [J]. Scientific Reports, 2021, 11(1): 12883. doi: 10.1038/s41598-021-91769-0
    [37]
    ROOT S, MATTSSON T R, COCHRANE K, et al. Shock compression response of poly(4-methyl-1-pentene) plastic to 985 GPa [J]. Journal of Applied Physics, 2015, 118(20): 205901. doi: 10.1063/1.4936168
    [38]
    STEVENS L L, ORLER E B, DATTELBAUM D M, et al. Brillouin-scattering determination of the acoustic properties and their pressure dependence for three polymeric elastomers [J]. The Journal of Chemical Physics, 2007, 127(10): 104906. doi: 10.1063/1.2757173
    [39]
    STEVENS L L, DATTELBAUM D M, AHART M, et al. High-pressure elastic properties of a fluorinated copolymer: poly(chlorotrifluoroethylene-co-vinylidene fluoride) (Kel-F800) [J]. Journal of Applied Physics, 2012, 112(2): 023523. doi: 10.1063/1.4737590
    [40]
    BENJAMIN A S, AHART M, GRAMSCH S A, et al. Acoustic properties of Kel F-800 copolymer up to 85 GPa [J]. The Journal of Chemical Physics, 2012, 137(1): 014514. doi: 10.1063/1.4731706
    [41]
    ZHA C S, MAO H K, HEMLEY R J. Elasticity of MgO and a primary pressure scale to 55 GPa [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(25): 13494–13499.
    [42]
    DATTELBAUM D M, JENSEN J D, SCHWENDT A M, et al. A novel method for static equation-of state-development: equation of state of a cross-linked poly(dimethylsiloxane) (PDMS) network to 10 GPa [J]. The Journal of Chemical Physics, 2005, 122(14): 144903. doi: 10.1063/1.1879872
    [43]
    SHEN G Y, MEI Q, PRAKAPENKA V B, et al. Effect of helium on structure and compression behavior of SiO2 glass [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15): 6004–6007.
    [44]
    ZENG Z D, WEN J G, LOU H B, et al. Preservation of high-pressure volatiles in nanostructured diamond capsules [J]. Nature, 2022, 608(7923): 513–517. doi: 10.1038/s41586-022-04955-z
    [45]
    FEDOTENKO T, SOUZA D S, KHANDARKHAEVA S, et al. Isothermal equation of state of crystalline and glassy materials from optical measurements in diamond anvil cells [J]. Review of Scientific Instruments, 2021, 92(6): 063907. doi: 10.1063/5.0050190
    [46]
    DATTELBAUM D M, STEVENS L L. Equations of state of binders and related polymers [M]//PEIRIS S M, PIERMARINI G J. Static Compression of Energetic Materials. Berlin Heidelberg: Springer, 2008: 127–202.
    [47]
    FONTANA L, VINH D Q, SANTORO M, et al. High-pressure crystalline polyethylene studied by X-ray diffraction and ab initio simulations [J]. Physical Review B, 2007, 75(17): 174112. doi: 10.1103/PhysRevB.75.174112
    [48]
    FONTANA L, SANTORO M, BINI R, et al. High-pressure vibrational properties of polyethylene [J]. The Journal of Chemical Physics, 2010, 133(20): 204502. doi: 10.1063/1.3507251
    [49]
    CAPATINA D, D’AMICO K, NUDELL J, et al. DCS—a high flux beamline for time resolved dynamic compression science—design highlights [J]. AIP Conference Proceedings, 2016, 1741(1): 030036.
    [50]
    ROSS M. The ice layer in Uranus and Neptune-diamonds in the sky? [J]. Nature, 1981, 292(5822): 435–436. doi: 10.1038/292435a0
    [51]
    HARTLEY N J, BROWN S, COWAN T E, et al. Evidence for crystalline structure in dynamically-compressed polyethylene up to 200 GPa [J]. Scientific Reports, 2019, 9(1): 4196. doi: 10.1038/s41598-019-40782-5
    [52]
    FULLER W, OATES C R, GREENALL R J, et al. X-ray and neutron diffraction studies of the structure of PEEK [J]. Conference Series-Institute of Physics, 1990: 213−224.
    [53]
    WU W, WIGNALL G D, MANDELKERN L. A SANS study of the plastic deformation mechanism in polyethylene [J]. Polymer, 1992, 33(19): 4137–4140. doi: 10.1016/0032-3861(92)90617-6
    [54]
    RAI D K, GILLILAN R E, HUANG Q Q, et al. High-pressure small-angle X-ray scattering cell for biological solutions and soft materials [J]. Journal of Applied Crystallography, 2021, 54(1): 111–122. doi: 10.1107/S1600576720014752
    [55]
    GEORGIEV G, DAI P S, OYEBODE E, et al. Real-time small angle X-ray scattering study of two-stage melt crystallization of PEEK [J]. Journal of Materials Science, 2001, 36(6): 1349–1361. doi: 10.1023/A:1017595201893
    [56]
    杨科, 蒋升, 闫帅, 等. 上海同步辐射光源高压相关线站概述 [J]. 高压物理学报, 2020, 34(5): 050102. doi: 10.11858/gywlxb.20200584

    YANG K, JIANG S, YAN S, et al. Application of shanghai synchrotron radiation source in high pressure research [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050102. doi: 10.11858/gywlxb.20200584
    [57]
    程贺, 张玮, 王芳卫, 等. 中国散裂中子源的多学科应用 [J]. 物理, 2019, 48(11): 701–707. doi: 10.7693/wl20191101

    CHENG H, ZHANG W, WANG F W, et al. Applications of the China spallation neutron source [J]. Physics, 2019, 48(11): 701–707. doi: 10.7693/wl20191101
    [58]
    李晓东, 袁清习, 徐伟, 等. 第四代高能同步辐射光源HEPS及高压相关线站建设 [J]. 高压物理学报, 2020, 34(5): 050101. doi: 10.11858/gywlxb.20200554

    LI X D, YUAN Q X, XU W, et al. Introduction of fourth-generation high energy photon source HEPS and the beamlines for high-pressure research [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050101. doi: 10.11858/gywlxb.20200554
    [59]
    王洪翠, 张波, 谷鸣. SHINE装置的准直器设计 [J]. 真空电子技术, 2022(1): 32–35, 47.

    WANG H C, ZHANG B, GU M. Design of collimators for SHINE facility [J]. Vacuum Electronics, 2022(1): 32–35, 47.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(36) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return