Volume 39 Issue 2
Apr 2025
Turn off MathJax
Article Contents
LI Qingwen, GAO Xiang, TAN Zhenglin, ZHANG Shuaishuai, XU Kangkang, CAI Shiting. Microscopic Simulation Study on Uniaxial Compressive Creep Characteristics of Coal Samples Constrained by Different Numbers of Carbon Fiber Reinforced Polymer Strips[J]. Chinese Journal of High Pressure Physics, 2025, 39(2): 024201. doi: 10.11858/gywlxb.20240861
Citation: LI Qingwen, GAO Xiang, TAN Zhenglin, ZHANG Shuaishuai, XU Kangkang, CAI Shiting. Microscopic Simulation Study on Uniaxial Compressive Creep Characteristics of Coal Samples Constrained by Different Numbers of Carbon Fiber Reinforced Polymer Strips[J]. Chinese Journal of High Pressure Physics, 2025, 39(2): 024201. doi: 10.11858/gywlxb.20240861

Microscopic Simulation Study on Uniaxial Compressive Creep Characteristics of Coal Samples Constrained by Different Numbers of Carbon Fiber Reinforced Polymer Strips

doi: 10.11858/gywlxb.20240861
  • Received Date: 23 Jul 2024
  • Rev Recd Date: 06 Aug 2024
  • Available Online: 13 Jan 2025
  • Issue Publish Date: 03 Apr 2025
  • To investigate the influence of carbon fiber reinforced polymer (CFRP) strip with different number on the creep mechanical properties of coal samples under axial compression, a coupled numerical simulation using PFC3D and FLAC3D software was conducted, and a hybrid contact model combining the Burger’s model and the Linearpbond model was established. The reliability of the numerical model was validated based on laboratory uniaxial compressive creep tests of unconstrained coal and coal samples constrained with 6 strips of CFRP sheet. The mechanical properties and energy evolution of coal samples constrained with 2 to 7 strips of CFRP sheet under uniaxial compression were studied by numerical simulations. The results show that as the number of strips increases, the initial axial strain of the coal sample tends to increase overall, with a significant increase in axial strain during the accelerated creep stage, and the maximum internal contact force in the hybrid contact model tends to increase overall. The ratio of the contact quantity of Burger’s model to that of Linearpbond model is about 1∶9, and this ratio in the numerical simulation model could reflect the creep mechanical properties of coal samples. Increasing the number of CFRP strips restricts radial deformation, increases the number of shear micro-cracks, causes more severe shear damage within the coal sample, and the failure mode of the coal sample changes from tensile failure to shear failure. As the number of strips increases, the total energy, elastic energy, and dissipated energy all increase, and the change in elastic energy is similar to the change in total energy before the coal sample experiencing creep instability.

     

  • loading
  • [1]
    蒋威. 厚硬基本顶综放开采沿空巷道变形破坏机制及控制 [D]. 北京: 中国矿业大学(北京), 2021.

    JIANG W. Deformation mechanism and stability control of roadway along goaf in fully mechanized top coal caving face with thick and hard roof [D]. Beijing: China University of Mining & Technology-Beijing, 2021.
    [2]
    ZHAO T B, GUO W Y, TAN Y L, et al. Case studies of rock bursts under complicated geological conditions during multi-seam mining at a depth of 800 m [J]. Rock Mechanics and Rock Engineering, 2018, 51(5): 1539–1564. doi: 10.1007/s00603-018-1411-7
    [3]
    ZHU W B, CHEN L, ZHOU Z L, et al. Failure propagation of pillars and roof in a room and pillar mine induced by longwall mining in the lower seam [J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 1193–1209. doi: 10.1007/s00603-018-1630-y
    [4]
    JIANG S Y, FAN G W, LI Q Z, et al. Effect of mining parameters on surface deformation and coal pillar stability under customized shortwall mining of deep extra-thick coal seams [J]. Energy Reports, 2021, 7: 2138–2154. doi: 10.1016/J.EGYR.2021.04.008
    [5]
    CAO Y, XU J H, CHEN L, et al. Experimental study on granite acoustic emission and micro-fracture behavior with combined compression and shear loading: phenomenon and mechanism [J]. Scientific Reports, 2020, 10(1): 22051. doi: 10.1038/s41598-020-78137-0
    [6]
    YANG Y J, DUAN H Q, XING L Y, et al. Fatigue characteristics of coal specimens under cyclic uniaxial loading [J]. Geotechnical Testing Journal, 2019, 42(2): 331–346. doi: 10.1520/GTJ20170263
    [7]
    王波, 谷长宛, 王军, 等. 对穿锚索加固作用下沿空掘巷留设煤柱承压性能试验研究 [J]. 中国矿业大学学报, 2020, 49(2): 262–270. doi: 10.13247/j.cnki.jcumt.001125

    WANG B, GU C W, WANG J, et al. Bearing capacity experimental study of coal pillar in the gob-side entry driving under the reinforcement of inflatable lock-type anchor [J]. Journal of China University of Mining & Technology, 2020, 49(2): 262–270. doi: 10.13247/j.cnki.jcumt.001125
    [8]
    赵国贞, 马占国, 孙凯, 等. 小煤柱沿空掘巷围岩变形控制机理研究 [J]. 采矿与安全工程学报, 2010, 27(4): 517–521. doi: 10.3969/j.issn.1673-3363.2010.04.013

    ZHAO G Z, MA Z G, SUN K, et al. Research on deformation controlling mechanism of the narrow pillar of roadway driving along next goaf [J]. Journal of Mining & Safety Engineering, 2010, 27(4): 517–521. doi: 10.3969/j.issn.1673-3363.2010.04.013
    [9]
    陈绍杰, 张俊文, 尹大伟, 等. 充填墙提升煤柱性能机理与数值模拟研究 [J]. 采矿与安全工程学报, 2017, 34(2): 268–275. doi: 10.13545/j.cnki.jmse.2017.02.010

    CHEN S J, ZHANG J W, YIN D W, et al. Mechanism and numerical simulation of filling walls improving performance of coal pillar [J]. Journal of Mining & Safety Engineering, 2017, 34(2): 268–275. doi: 10.13545/j.cnki.jmse.2017.02.010
    [10]
    张洪伟, 万志军, 张源, 等. 工作面顺序接续下综放沿空掘巷窄煤柱稳定性控制 [J]. 煤炭学报, 2021, 46(4): 1211–1219. doi: 10.13225/j.cnki.jccs.2020.0028

    ZHANG H W, WAN Z J, ZHANG Y, et al. Stability control of narrow coal pillars in the fully-mechanized gob-side entry during sequenced top coal caving mining [J]. Journal of China Coal Society, 2021, 46(4): 1211–1219. doi: 10.13225/j.cnki.jccs.2020.0028
    [11]
    WANG Z Y, FENG P, ZHAO Y, et al. FRP-confined concrete core-encased rebar for RC columns: concept and axial compressive behavior [J]. Composite Structures, 2019, 222: 110915. doi: 10.1016/j.compstruct.2019.110915
    [12]
    SIWOWSKI T, RAJCHEL M. Structural performance of a hybrid FRP composite-lightweight concrete bridge girder [J]. Composites Part B: Engineering, 2019, 174: 107055. doi: 10.1016/j.compositesb.2019.107055
    [13]
    AL-SAADI N T K, MOHAMMED A, AL-MAHAIDI R, et al. A state-of-the-art review: near-surface mounted FRP composites for reinforced concrete structures [J]. Construction and Building Materials, 2019, 209: 748–769. doi: 10.1016/j.conbuildmat.2019.03.121
    [14]
    JYOTI D A, KUMAR M P, NATH G C, et al. Extraction of locked-up coal by strengthening of rib pillars with FRP-A comparative study through numerical modelling [J]. International Journal of Mining Science and Technology, 2017, 27(2): 261–267. doi: 10.1016/j.ijmst.2017.01.024
    [15]
    ZOU X X, D’ANTINO T, SNEED L H. Investigation of the bond behavior of the fiber reinforced composite-concrete interface using the finite difference method (FDM) [J]. Composite Structures, 2021, 278: 114643. doi: 10.1016/j.compstruct.2021.114643
    [16]
    XU C X, WU Y A, LIU X Q, et al. Experimental research on seismic behavior of seismic-damaged double-deck viaduct frame pier strengthened with CFRP and enveloped steel [J]. Materials, 2022, 15(23): 8668. doi: 10.3390/ma15238668
    [17]
    马超, 王作虎, 路德春, 等. CFRP加固地铁车站结构中柱地震损伤评价研究 [J]. 岩土工程学报, 2020, 42(12): 2249–2256. doi: 10.11779/CJGE202012011

    MA C, WANG Z H, LU D C, et al. Seismic damage evaluation of CFRP-strengthened columns in subway stations [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2249–2256. doi: 10.11779/CJGE202012011
    [18]
    GRIGGS D. Creep of rocks [J]. The Journal of Geology, 1939, 47(3): 225–251. doi: 10.1086/624775
    [19]
    ZHAO Z, WU P, WANG L, et al. Influence of moisture content on creep mechanical characteristic and mic-fracture behavior of water-bearing coal specimen [J]. Geofluids, 2022, 2022: 4014462. doi: 10.1155/2022/4014462
    [20]
    WANG D B, ZLOTNIK S, DÍEZ P, et al. A numerical study on hydraulic fracturing problems via the proper generalized decomposition method [J]. Computer Modeling in Engineering & Sciences, 2020, 122(2): 703–720. doi: 10.32604/cmes.2020.08033
    [21]
    XIA C, LIU Z, ZHOU C Y. Burger’s bonded model for distinct element simulation of the multi-factor full creep process of soft rock [J]. Journal of Marine Science and Engineering, 2021, 9(9): 945. doi: 10.3390/jmse9090945
    [22]
    袁海平, 曹平, 许万忠, 等. 岩石粘弹塑性本构关系及改进的Burgers蠕变模型 [J]. 岩土工程学报, 2006, 28(6): 796–799. doi: 10.3321/j.issn:1000-4548.2006.06.024

    YUAN H P, CAO P, XU W Z, et al. Visco-elastop-lastic constitutive relationship of rock and modified Burgers creep model [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 796–799. doi: 10.3321/j.issn:1000-4548.2006.06.024
    [23]
    HE P F, KULATILAKE P H S W, YANG X X, et al. Detailed comparison of nine intact rock failure criteria using polyaxial intact coal strength data obtained through PFC3D simulations [J]. Acta Geotechnica, 2018, 13(2): 419–445. doi: 10.1007/s11440-017-0566-9
    [24]
    ZHANG L, REN T, LI X C, et al. Acoustic emission, damage and cracking evolution of intact coal under compressive loads: experimental and discrete element modelling [J]. Engineering Fracture Mechanics, 2021, 252: 107690. doi: 10.1016/j.engfracmech.2021.107690
    [25]
    王刚, 王锐, 武猛猛, 等. 渗透压-应力耦合作用下煤体常规三轴试验的颗粒流模拟 [J]. 岩土力学, 2016, 37(Suppl 1): 537–546. doi: 10.16285/j.rsm.2016.S1.070

    WANG G, WANG R, WU M M, et al. Simulation of conventional triaxial test on coal under hydro-mechanical coupling by particle flow code [J]. Rock and Soil Mechanics, 2016, 37(Suppl 1): 537–546. doi: 10.16285/j.rsm.2016.S1.070
    [26]
    LI W J, HAN Y H, WANG T, et al. DEM micromechanical modeling and laboratory experiment on creep behavior of salt rock [J]. Journal of Natural Gas Science and Engineering, 2017, 46: 38–46. doi: 10.1016/j.jngse.2017.07.013
    [27]
    谭鑫, 曹明, 冯龙健, 等. 土工织物包裹碎石桩力学特性的数值模拟研究 [J]. 中国公路学报, 2020, 33(9): 136–145. doi: 10.3969/j.issn.1001-7372.2020.09.014

    TAN X, CAO M, FENG L J, et al. Numerical study on mechanical behaviors of geotextile-wrapped stone column [J]. China Journal of Highway and Transport, 2020, 33(9): 136–145. doi: 10.3969/j.issn.1001-7372.2020.09.014
    [28]
    郭润兰, 范雅琼, 王广书, 等. 基于PFC3D的机床床身用树脂矿物复合材料损伤性能细观研究 [J]. 复合材料学报, 2022, 39(2): 834–844. doi: 10.13801/j.cnki.fhclxb.20210420.004

    GUO R L, FAN Y Q, WANG G S, et al. Meso-scale study on damage performance of resin mineral composite material for machine tool bed based on PFC3D [J]. Acta Materiae Compositae Sinica, 2022, 39(2): 834–844. doi: 10.13801/j.cnki.fhclxb.20210420.004
    [29]
    石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用 [M]. 北京: 中国建筑工业出版社, 2018.

    SHI C, ZHANG Q, WANG S N. Numerical simulation technology and application with particle flow code (PFC 5.0) [M]. Beijing: China Architecture & Building Press, 2018.
    [30]
    李庆文, 胡露露, 曹行, 等. CFRP布均匀约束煤圆柱轴压性能 [J]. 复合材料学报, 2022, 39(11): 5611–5624. doi: 10.13801/j.cnki.fhclxb.20211201.001

    LI Q W, HU L L, CAO H, et al. Axial compressive behavior of CFRP uniformly wrapped coal in circular columns [J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5611–5624. doi: 10.13801/j.cnki.fhclxb.20211201.001
    [31]
    胡光辉, 徐涛, 陈崇枫, 等. 基于离散元法的脆性岩石细观蠕变失稳研究 [J]. 工程力学, 2018, 35(9): 26–36. doi: 10.6052/j.issn.1000-4750.2017.05.0356

    HU G H, XU T, CHEN C F, et al. A microscopic study of creep and fracturing of brittle rocks based on discrete element method [J]. Engineering Mechanics, 2018, 35(9): 26–36. doi: 10.6052/j.issn.1000-4750.2017.05.0356
    [32]
    李庆文, 高森林, 胡露露, 等. 不同加载速率下非均质煤样能量耗散损伤本构关系 [J]. 煤炭学报, 2022, 47(Suppl 1): 90–102. doi: 10.13225/j.cnki.jccs.2022.0163

    LI Q W, GAO S L, HU L L, et al. Constitutive relation of energy dissipation damage of heterogeneous coal samples under different loading rates [J]. Journal of China Coal Society, 2022, 47(Suppl 1): 90–102. doi: 10.13225/j.cnki.jccs.2022.0163
    [33]
    李庆文, 禹萌萌, 高森林, 等. 加载速率对碳纤维布被动约束煤能量演化的影响 [J]. 煤炭学报, 2024, 49(Suppl 1): 236–247. doi: 10.13225/j.cnki.jccs.2023.0238

    LI Q W, YU M M, GAO S L, et al. Effect of loading rate on energy evolution of coal confined passively by CFRP sheets [J]. Journal of China Coal Society, 2024, 49(Suppl 1): 236–247. doi: 10.13225/j.cnki.jccs.2023.0238
    [34]
    岳少飞, 王开, 张小强, 等. 不同加载速率无烟煤蠕变特性及能量演化规律 [J]. 煤炭学报, 2023, 48(8): 3060–3075. doi: 10.13225/j.cnki.jccs.2023.0120

    YUE S F, WANG K, ZHANG X Q, et al. Creep properties and energy evolution of anthracite coal with different loading rates [J]. Journal of China Coal Society, 2023, 48(8): 3060–3075. doi: 10.13225/j.cnki.jccs.2023.0120
    [35]
    杨磊, 王晓卿, 李建忠. 不同冲击倾向性煤单轴压缩下能量演化与损伤特征 [J]. 煤炭科学技术, 2021, 49(6): 111–118. doi: 10.13199/j.cnki.cst.2021.06.013

    YANG L, WANG X Q, LI J Z. Energy evolution and damage characteristics of coal with different bursting liability under uniaxial compression [J]. Coal Science and Technology, 2021, 49(6): 111–118. doi: 10.13199/j.cnki.cst.2021.06.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article views(28) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return