
Citation: | TIAN Ruifeng, YE Pengda, CHEN Yuxiang, JIN Meiling, LI Xiang. High Pressure High Temperature Synthesis and Physical Properties of Transition Metal Perovskites[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050104. doi: 10.11858/gywlxb.20240842 |
冲击载荷下延性金属的层裂破坏是一个复杂的损伤演化过程,目前被广泛认同的延性金属损伤发展模式是孔洞首先在材料内部成核,随后孔洞长大,当孔洞长大到一定程度时,孔洞之间开始聚集,最终在材料内部形成宏观断裂面[1-2],整个过程和物理机制十分复杂。孔洞聚集是层裂过程中的关键环节,因此,研究孔洞聚集行为对揭示材料层裂的整个物理过程和本质具有重要意义。
近年来,研究人员针对影响层裂行为的多种因素进行了研究,如外载荷条件[3-4]、材料微观结构[5]等。Curran等[6]综合各种实验结果,总结出两种微孔洞的聚集方式:一种是孔洞之间的直接聚集,由塑性应变场相互作用造成,一般发生在延性金属中;另一种是孔洞之间材料的局部塑性失稳,孔洞之间出现一个很窄的局部化区域,孔洞通过该区域连接,从而发生聚集。同时,也有学者为了描述孔洞成核和长大过程,建立了一些微观层裂模型,如NAG模型[1]、VG模型[7]等。目前,孔洞聚集的物理机制研究相对较少,部分学者[8-9]通过逾渗理论描述微孔团簇之间的相互作用,但这也是基于平均场理论建模的。
随着计算能力的不断提高,多尺度数值模拟方法越来越多地运用于延性金属中的孔洞聚集研究中。Tu等[10]通过分子动力学方法模拟了单晶铝中两个孔洞的聚集过程,结果表明,随着压缩应变的增大,屈服强度呈现先降低后升高的趋势,压缩阶段孔洞表面产生的位错阻碍了其在拉伸阶段的聚集。Yang等[11]对铝中的孔洞聚集进行了分子动力学模拟,结果表明,孔洞聚集的持续时间随温度的升高而延长。Zhao等[12]对高应变率拉伸载荷下单晶铜中孔洞长大和聚集进行了分子动力学模拟,结果表明,应力三轴度的峰值先随初始韧带距离(initial ligament distance,ILD)的增大而增大,直到达到孔洞聚集的临界点,随后减小,应力三轴度可能是表征孔洞是否发生聚集的一个重要指标。王永刚等[13]采用有限元分析方法,研究了延性金属动态拉伸断裂过程中孔洞的贯通行为,发现孔洞之间开始贯通的临界韧带距离约为0.5倍孔洞的实时直径,并指出临界孔洞间韧带距离判据和临界孔洞体积分数判据在物理本质上是一致的。Hure[14]采用有限元方法,利用有效各向同性屈服应力,提出了一个多孔单晶材料的聚集准则。Holte等[15]通过对应变梯度增强材料基体中嵌入离散空隙的单胞模型进行有限元分析,结果表明,在没有应变梯度的影响下,减小孔洞间韧带距离会增强孔洞的聚集倾向。
由于实验过程中难以实时观测材料的内部信息,人们对孔洞聚集行为的认识仍不够深刻,数值模拟方法便成为研究层裂过程中孔洞聚集行为的有效途径之一。考虑到分子动力学模拟技术所涉及的尺度相对较小,无法真实还原层裂实验中孔洞聚集至靶板断裂的整个损伤演化过程,为此,我们早期通过有限元数值模拟,以厚度比为1∶2建立了一维应变下的平板撞击模型[16],进行了层裂过程中的损伤演化分析。但是,对于随机孔洞的损伤演化而言,其聚集行为仍很难用定量的方式剖析孔洞之间的相互作用。为定量分析孔洞在层裂过程中的聚集行为,本研究拟建立平板撞击条件下高纯铜层裂损伤演化的有限元模型,重点探讨孔洞间的初始韧带距离、孔洞直径以及孔洞分布位置对孔洞聚集行为的影响规律,为建立合理的孔洞聚集模型奠定基础,进一步揭示延性金属层裂的物理机制。
在延性金属的初始层裂实验中,通过软回收靶板,观察到孔洞之间的聚集现象。图1(a)、图1(b)、图1(c)是早期实验照片[17],可以观察到相同孔洞(孔径相差不大)、不同孔洞以及三孔洞聚集后的现象;从图1 (d)[18]中可以观察到不同位置的孔洞聚集后的现象(图中均用红圈标出)。基于这些实验现象,本研究将通过有限元方法进行对比分析。
在ABAQUS有限元软件中建立高纯铜飞片和靶板模型,为减少计算时间、节约计算成本,这里建立的飞片和靶板模型均为二维模型,所建模型在厚度方向上与实验保持一致,如图2所示,其中飞片的宽度为2.0 mm,厚度为0.4 mm,靶板的尺寸为4.0 mm×0.4 mm。为了模拟一维应变条件,对飞片和靶板施加轴对称周期边界条件。在对称碰撞条件下,由波传播理论分析可知,当飞片以一定的速度撞击靶板时,接触面会向飞片和靶板分别传入冲击压缩波,冲击压缩波分别在飞片和靶板的自由面上反射形成卸载波,相向的卸载波在靶板中相遇,产生拉伸应力区。当飞片和靶板的厚度比为1∶2时,靶板中心及其附近区域拉伸应力的持续时间最长,损伤主要集中在该区域内,因此在靶板中心位置设置边长为0.4 mm的正方形作为损伤区域。在损伤区域的中心布置微米级的填充孔洞作为初始成核源。
在压缩过程中,孔洞具有与周围靶板相同的材料性能,孔洞的成核应力
pc=23(σ0+ky√dG)[1−ln32(σ0E+kyE√dG)] |
(1) |
式中:
计算中,高应变率加载下高纯铜材料的本构关系采用理想流体弹塑性本构关系,即
σij=−p+Sij |
(2) |
式中:
ϕ=12SijSij−σ2y2⩽0 |
(3) |
则偏应力张量为
St+1ij=2G(εij−εv) |
(4) |
反之,若von Mises屈服函数满足
ϕ=12SijSij−σ2y2>0 |
(5) |
则偏应力张量为
St+1ij=σyS∗Sij,S∗=(23SijSij)1/2 |
(6) |
式中:
σy=(A+Bεnp)(1+Cln˙ε∗p)(1−T∗m) |
(7) |
式中:
εf=[d1+d2exp(d3σ∗)](1+d4ln˙εp∗)(1+d5T∗) |
(8) |
式中:
静水压力
p=Kη(1−sη)2(1−Γ0η2)+Γ0ρ0emη=ρρ0−1 |
(9) |
式中:
采用上述有限元模型对两个相同孔洞的聚集行为进行数值模拟。初始成核源孔洞直径设置为5 μm,如图2(a)所示,飞片的撞击速度设置为100 m/s,对这两个孔洞在不同孔洞间初始韧带距离条件下的聚集行为进行分析,在一系列模拟中,孔洞间的初始韧带距离dIL0分别设置为20、30、40和50 μm。王永刚等[13]的研究表明:在孔洞独立长大阶段,孔洞为“球对称”长大,即图1(a)中孔洞上A、B两点的位移是一致的;A、B两点的位移发生明显改变,表明孔洞之间的塑性应变场交叠影响了B点的位移增长速率,判断此时孔洞开始聚集。其中,B点的位移增长速率减小直接影响孔洞直径的变化,因此通过实时跟踪孔洞长大、聚集过程中孔洞直径的变化可以判断孔洞何时发生聚集。
以孔洞间初始韧带距离dIL0=20 μm的两孔为例,图3给出了孔洞上A点和B点的位移时程曲线以及孔洞直径增长速率时程曲线。从A、B两点的位移时程曲线可以发现:t=1.57 μs左右时,A、B点的位移确实存在一个偏差点,此时孔洞开始发生聚集。从孔洞直径增长速率曲线可以发现:孔洞直径增长速率起初缓慢增长,随后进入近似线性增长阶段,此阶段的直径增长加速度Kg约为2.995 Gm/s2;当A、B两点位移出现偏差时,对应的孔洞直径增长速率出现非线性变化,此阶段的直径增长加速度Kc约为1.717 Gm/s2。孔洞间塑性应变场的交叠会影响孔洞直径的增长,孔洞在长大和聚集过程中的直径增长加速度存在明显变化,以此可判定孔洞的聚集情况;在t=1.63 μs后,孔洞直径出现了减速增长的变化趋势,对应图4中两孔发生聚集的一侧应变局部化严重,受两孔之间的应力联结作用,最终导致两孔贯通。
图4给出了不同时刻dIL0=20 μm的孔洞聚集的等效塑性应变演化云图。可见,孔洞的长大和聚集强烈依赖塑性应变。图4中两孔洞各自形成几乎均匀的球对称塑性应变场;当t=1.57 μs时,孔洞开始发生聚集,孔洞周围的塑性应变场相互交叠,孔洞仍为规则的圆形;当t=1.63 μs时,对应图3中孔洞直径的增长速率呈非线性增长,孔洞之间的塑性应变场严重交叠,阻碍了孔洞的增长,孔洞形状也发生明显变化;当t=1.65 μs时,孔洞之间发生贯穿。孔洞周围产生的塑性应变场相互作用形成新的塑性流动路径,这一路径最终发展为宏观的断裂面。图4显示的结果与图1(a)的实验结果相似。
图5(a)给出了不同孔洞间初始韧带距离下孔洞直径增长速率时程曲线,根据上述判据判断孔洞之间开始聚集的起始时刻(图5(a)中用虚线标出)。当初始韧带距离dIL0为20、30、40、50 μm时,孔洞长大阶段的直径增长加速度相差不大,分别为2.995、2.770、2.315、2.117 Gm/s2,发生聚集后的加速度均出现骤降,分别为1.717、1.483、0.984、0.602 Gm/s2。随着dIL0的增大,孔洞直径增长速率峰值持续时间也越来越长,出现减速增长趋势的时间点也越来越延后,意味着孔洞贯通时间也延后。图5(b)将图5(a)中各组孔洞开始聚集的起始时间tn与dIL0=20 μm的孔洞开始聚集的起始时间t1进行归一化,结果显示:随着dIL0的增加,孔洞之间开始聚集的起始时间逐渐延后。图6给出了不同dIL0条件下实时孔洞间的韧带距离dIL随时间的演化曲线,根据孔洞之间开始聚集的起始时间,容易确定不同dIL0条件下孔洞开始聚集的临界韧带距离(dILc),可见,dILc随dIL0的增大而增大。
在层裂实验中,成核孔洞随机分布在材料内部,本研究通过保持孔洞直径不变、改变孔洞位置,探究孔洞位置分布对孔洞聚集的影响。设置孔洞分别为水平(0°)分布、垂直(90°)分布和呈45°角分布,如图2(a)所示,孔洞间初始韧带距离dIL0均设置为30 μm,飞片的撞击速度为100 m/s。统计3种位置分布方式的孔洞直径增长速率,结果如图7所示。从图7中可以看到:0°分布和90°分布的两个孔洞直径增长速率无明显差异,而45°分布的两个孔洞在聚集后期存在差异;在孔洞长大阶段,45°分布的孔洞直径增长加速度最大,约为3.179 Gm/s2,90°分布方式次之,约为2.900 Gm/s2, 0°分布方式最慢,约为2.770 Gm/s2;当孔洞直径增长速率出现非线性变化时,45°分布、90°分布、0°分布的孔洞直径增长加速度分别降至2.112、1.500和1.483 Gm/s2。通过上述孔洞发生聚集的判据,可以发现,45°分布、90°分布、0°分布孔洞出现聚集的时间分别为1.57、1.60和1.58 μs,即在这3种孔洞位置分布中,45°分布方式的孔洞更容易发生聚集。
图8为3种几何构型孔洞聚集过程的演化云图。0°分布的两个孔洞左右两侧的塑性应变场几乎呈对称分布,孔洞间的拉伸破坏使孔洞间出现贯通的损伤带,最终导致两孔洞贯通;90°分布的两个孔洞的塑性应变场则几乎呈上下对称,最终在竖直方向上出现孔洞贯通;45°分布的两个孔洞的塑性应变场在垂直于45°方向上几乎呈对称分布,最终两孔洞沿45°方向贯通。图8显示的结果与图1(d)中90°和45°分布孔洞的实验结果相似。
层裂实验中,成核孔洞的大小是随机的,为了探究随机大、小两个孔洞之间的聚集行为,模拟了孔径不同的两个孔洞之间的聚集行为,保持其中一个初始成核孔洞的直径d1为5 μm不变,另一个孔洞直径d2分别设置为1、3和7 μm,则孔径比分别为1/5、3/5、7/5,孔洞间的dIL0设置为30 μm,飞片的撞击速度设置为100 m/s。
图9(a)给出了不同孔径比条件下各孔洞直径增长速率时程曲线。可以发现:孔洞直径增长速率均表现为先缓慢增长,随后进入近似线性增长阶段,接着出现非线性增长阶段,最后孔洞直径减速增长。当孔径比为1/5时,小孔和大孔的直径增长速率差异明显,随着孔径比的逐渐增大,这种差异越来越不明显,说明大孔抑制小孔的生长,但是这种抑制效果随孔径比的增大而变弱。根据上述孔洞发生聚集的判据发现:当孔径比为1/5时,小孔出现聚集的时间约为1.57 μs,直径增长加速度约为2.228 Gm/s2,大孔出现聚集的时间约为1.59 μs,直径增长加速度约为0.869 Gm/s2;当孔径比为3/5时,小孔出现聚集的时间约为1.58 μs,直径增长加速度约为1.166 Gm/s2,大孔出现聚集的时间约为1.59 μs,直径增长加速度约为1.141 Gm/s2;当孔径比为7/5时,大孔和小孔出现聚集的时间均约为1.58 μs,直径增长加速度约为1.441 Gm/s2。统计孔径比为1/5的孔洞在不同时刻下水平长度与竖直长度的比值(x/y,简称横纵比),如图9(b)所示,结果显示:小孔的横纵比变化明显大于大孔的横纵比变化,即小孔更早出现破坏,这一结果在图10中表现为靠近小孔一侧的韧带破坏更加严重。
图10为不同孔径比条件下孔洞聚集的演化云图。从图10中可以看到:当孔径比为1/5时,随着时间的推移,大孔几乎呈球形变化,小孔出现了严重的破坏变形。在初期阶段,孔洞周围形成几乎呈球形的塑性应变场,但是这两个孔洞的塑性应变场不对称,与相同孔洞之间韧带的均匀破坏不同,不同孔径两孔之间的韧带出现小孔被大孔拖拽,发生非对称破坏的现象。图10显示的结果与图1(b)中大小孔洞聚集的实验结果相似。
基于上述两孔聚集行为的模拟和分析,采用三孔几何模型探讨孔洞聚集时的竞争机制。当两孔发生聚集时,孔洞只有一侧与另一孔洞相互作用;当3个孔洞聚集时,中间孔洞的左右两侧均会受到来自其他两个孔洞的作用,导致中间孔洞与附近孔洞发生聚集时存在一定的先后顺序和竞争关系,以下将通过改变孔洞间初始韧带距离和孔洞直径来研究三孔聚集时的竞争机制。
三孔的几何模型相比于上述两孔的几何模型做了一些调整,在损伤区域内设置3个直径相同的孔洞,直径大小为5 μm,如图2(b)所示。通过改变孔洞间初始韧带距离来研究孔洞之间聚集的竞争机制,这里选取的3组孔洞中,孔洞1与孔洞2之间的韧带距离统一设置为30 μm,孔洞2与孔洞3之间的韧带距离分别设置为30、50、70 μm,飞片的撞击速度设置为100 m/s。
图11给出了不同孔洞间初始韧带距离下各孔洞的直径增长速率曲线。从图11可以看出:当3个孔洞之间的初始韧带距离均为30 μm时,孔洞之间同时发生聚集,且孔洞之间聚集的起始时间约为1.57 μs,直径增长加速度约为2.484 Gm/s2;当孔洞2与孔洞3之间的韧带距离增加至50 μm时,孔洞1与孔洞2之间聚集的起始时间约为1.57 μs,直径增长加速度约为2.118 Gm/s2,孔洞3向孔洞2聚集的起始时间稍有延迟,约为1.58 μs,直径增长加速度约为1.168 Gm/s2;当孔洞2与孔洞3之间的韧带距离增加至70 μm时,也可观察到与50 μm时相似的情况。通过对比发现,孔洞之间聚集的起始时间随着初始韧带距离的增加而延长。孔洞2由于受两侧塑性应变场的影响,其直径增长速率与孔洞1和孔洞3存在明显区别,但是随着初始韧带距离的增加,孔洞2受孔洞3的影响变小,其直径增长速率越来越接近其他两个孔洞。
图12给出了不同时刻、不同初始韧带距离下3个孔洞聚集的演化云图。当t=1.54 μs时,损伤区域的拉伸应力达到孔洞成核应力(阈值),孔洞成核。当dIL0=30 μm时,孔洞周围的塑性应变场几乎呈对称变化,3个孔洞之间同时发生贯穿,其中孔洞1和孔洞3的最终形状十分相似,而孔洞2则受两侧塑性应变场的影响,在水平方向上被拉长,且最终的形状也与孔洞1和孔洞3存在区别;随着孔洞2与孔洞3之间初始韧带距离的增加,可以看到孔洞1与孔洞2之间的塑性应变场优先相互作用,即初始韧带距离越短,孔洞越容易发生聚集。相同初始韧带距离下的孔洞1和孔洞2发生贯通的时间均为1.69 μs,而孔洞 2与孔洞3之间贯通的时间随着初始韧带距离的增加而延迟。
通过改变成核孔洞的大小研究不同孔径对孔洞聚集时竞争机制的影响。对损伤区域内成核孔洞的直径进行调整,孔洞1和孔洞2的直径相等,设置为5 μm,孔洞3的直径d3分别设置为5、10、15 μm,孔洞间初始韧带距离设置为50 μm,飞片的撞击速度设置为100 m/s。
图13给出了三孔聚集时各孔洞直径增长速率时程曲线,结果显示:在d3为5、10、15 μm的条件下,孔洞2与孔洞1几乎同一时刻发生聚集,分别为1.58、1.57、1.57 μs,直径增长加速度分别约为1.916、2.022和2.887 Gm/s2;当d3=5 μm时,孔洞2与孔洞3也几乎同一时刻发生聚集,随着d3的增大,孔洞3的聚集时间为1.58 μs,稍有推迟,直径增长加速度约为0.695 Gm/s2。通过对比发现,孔洞2优先与孔洞1发生聚集,即孔洞优先与相同直径的孔洞聚集,不同直径孔洞之间发生聚集的时刻稍有延迟。
图14给出了不同时刻、不同d3下3个孔洞的长大、聚集演化云图。当t=1.54 μs时,各孔洞成核;随着时间的推移,当d3=5 μm时,孔洞周围的塑性应变场几乎呈对称变化,并且3个孔洞同时贯通;当d3逐渐增大时,孔洞1与孔洞2的塑性应变场优先交叠,并且优先发生贯通,孔洞1与孔洞3之间的塑性应变低于前者。图14显示的结果与图1(c)的实验结果相似。
采用ABAQUS动力学有限元程序,对二维模型中双孔和三孔的聚集行为进行了数值模拟,讨论了孔洞间初始韧带距离、孔洞直径和孔洞位置分布的影响,得到了如下4点认识。
(1) 可以通过孔洞直径增长速率判断孔洞之间何时开始聚集,数值模拟结果显示,该方法具有一定的合理性。
(2) 相同孔径孔洞之间开始聚集的临界韧带距离随孔洞间初始韧带距离的增加而增大,相同孔径孔洞之间聚集时,孔洞各自均匀长大,不同孔径孔洞之间聚集时,小孔洞优先开始向大孔洞聚集。
(3) 相同孔洞条件下,在孔洞长大阶段,45°分布方式孔洞的增长加速度相比于0°和90°分布时孔洞的增长加速度更大,且45°分布方式的孔洞之间聚集的起始时间最早。
(4) 三孔聚集时,相同韧带距离下的相同孔洞之间几乎同时聚集且同时贯通,孔洞间聚集的起始时间随初始韧带距离的增加而延后;孔径不同时,大孔向附近小洞聚集的起始时间较迟,相同孔洞之间优先发生聚集并贯通,不同孔洞之间贯通较慢。
[1] |
YASHIMA M, ALI R. Structural phase transition and octahedral tilting in the calcium titanate perovskite CaTiO3 [J]. Solid State Ionics, 2009, 180(2/3): 120–126.
|
[2] |
YANG Y, SUN Y B, JIANG Y S. Structure and photocatalytic property of perovskite and perovskite-related compounds [J]. Materials Chemistry and Physics, 2006, 96(2/3): 234–239.
|
[3] |
KAY H F, BAILEY P C. Structure and properties of CaTiO3 [J]. Acta Crystallographica, 1957, 10(3): 219–226. doi: 10.1107/S0365110X57000675
|
[4] |
ALI R, YASHIMA M. Space group and crystal structure of the perovskite CaTiO3 from 296 to 1 720 K [J]. Journal of Solid State Chemistry, 2005, 178(9): 2867–2872. doi: 10.1016/j.jssc.2005.06.027
|
[5] |
PHUNG N, FÉLIX R, MEGGIOLARO D, et al. The doping mechanism of halide perovskite unveiled by alkaline earth metals [J]. Journal of the American Chemical Society, 2020, 142(5): 2364–2374. doi: 10.1021/jacs.9b11637
|
[6] |
PAZOKI M, JACOBSSON T J, HAGFELDT A, et al. Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: replacement of lead with alkaline-earth metals [J]. Physical Review B, 2016, 93(14): 144105. doi: 10.1103/PhysRevB.93.144105
|
[7] |
DIMESSO L, DAS C, MAYER T, et al. Investigation of earth-alkaline (EA=Mg, Ca, Sr) containing methylammonium tin iodide perovskite systems [J]. Journal of Materials Science, 2018, 53(1): 356–368. doi: 10.1007/s10853-017-1545-0
|
[8] |
BROUS J, FANKUCHEN I, BANKS E. Rare earth titanates with a perovskite structure [J]. Acta Crystallographica, 1953, 6(1): 67–70. doi: 10.1107/S0365110X53000156
|
[9] |
YUAN L, HUANG K K, WANG S, et al. Crystal shape tailoring in perovskite structure rare-earth ferrites REFeO3 (RE=La, Pr, Sm, Dy, Er, and Y) and shape-dependent magnetic properties of YFeO3 [J]. Crystal Growth & Design, 2016, 16(11): 6522–6530.
|
[10] |
SARKAR A, DJENADIC R, WANG D, et al. Rare earth and transition metal based entropy stabilised perovskite type oxides [J]. Journal of the European Ceramic Society, 2018, 38(5): 2318–2327.
|
[11] |
ARIMA T, TOKURA Y, TORRANCE J B. Variation of optical gaps in perovskite-type 3d transition-metal oxides [J]. Physical Review B, 1993, 48(23): 17006–17009. doi: 10.1103/PhysRevB.48.17006
|
[12] |
TERAKURA K. Magnetism, orbital ordering and lattice distortion in perovskite transition-metal oxides [J]. Progress in Materials Science, 2007, 52(2/3): 388–400.
|
[13] |
YAKEL H L. On the structures of some compounds of the perovskite type [J]. Acta Crystallographica, 1955, 8(7): 394–398. doi: 10.1107/S0365110X55001291
|
[14] |
SNAITH H J. Present status and future prospects of perovskite photovoltaics [J]. Nature Materials, 2018, 17(5): 372–376. doi: 10.1038/s41563-018-0071-z
|
[15] |
ZHU H W, TEALE S, LINTANGPRADIPTO M N, et al. Long-term operating stability in perovskite photovoltaics [J]. Nature Reviews Materials, 2023, 8(9): 569–586. doi: 10.1038/s41578-023-00582-w
|
[16] |
TAILOR N K, ABDI-JALEBI M, GUPTA V, et al. Recent progress in morphology optimization in perovskite solar cell [J]. Journal of Materials Chemistry A, 2020, 8(41): 21356–21386. doi: 10.1039/D0TA00143K
|
[17] |
MOHAMAD NOH M F, TEH C H, DAIK R, et al. The architecture of the electron transport layer for a perovskite solar cell [J]. Journal of Materials Chemistry C, 2018, 6(4): 682–712.
|
[18] |
IM J H, LUO J S, FRANCKEVIČIUS M, et al. Nanowire perovskite solar cell [J]. Nano Letters, 2015, 15(3): 2120–2126. doi: 10.1021/acs.nanolett.5b00046
|
[19] |
BIAN Z F, WANG Z G, JIANG B, et al. A review on perovskite catalysts for reforming of methane to hydrogen production [J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110291.
|
[20] |
LI H H, YU J Y, GONG Y S, et al. Perovskite catalysts with different dimensionalities for environmental and energy applications: a review [J]. Separation and Purification Technology, 2023, 307: 122716. doi: 10.1016/j.seppur.2022.122716
|
[21] |
MISONO M. Recent progress in the practical applications of heteropolyacid and perovskite catalysts: catalytic technology for the sustainable society [J]. Catalysis Today, 2009, 144(3/4): 285–291.
|
[22] |
ZHANG C, SUN D, SHENG C X, et al. Magnetic field effects in hybrid perovskite devices [J]. Nature Physics, 2015, 11(5): 427–434. doi: 10.1038/nphys3277
|
[23] |
LEI Y S, CHEN Y M, ZHANG R Q, et al. A fabrication process for flexible single-crystal perovskite devices [J]. Nature, 2020, 583(7818): 790–795. doi: 10.1038/s41586-020-2526-z
|
[24] |
STRANKS S D, HOYE R L Z, DI D W, et al. The physics of light emission in halide perovskite devices [J]. Advanced Materials, 2019, 31(47): 1803336.
|
[25] |
MIRWALD P W, GETTING I C, KENNEDY G C. Low-friction cell for piston-cylinder high-pressure apparatus [J]. Journal of Geophysical Research, 1975, 80(11): 1519–1525. doi: 10.1029/JB080i011p01519
|
[26] |
KENDALL D P, DEMBOWSKI P V, DAVIDSON T E. New device for generating ultra-high pressure [J]. Review of Scientific Instruments, 1975, 46(5): 629–632. doi: 10.1063/1.1134277
|
[27] |
DOBSON D P, MECKLENBURGH J, ALFE D, et al. A new belt-type apparatus for neutron-based rheological measurements at gigapascal pressures [J]. High Pressure Research, 2005, 25(2): 107–118. doi: 10.1080/08957950500143500
|
[28] |
HALL H T. Ultrahigh-pressure research: at ultrahigh pressures new and sometimes unexpected chemical and physical events occur [J]. Science, 1958, 128(3322): 445–449. doi: 10.1126/science.128.3322.445
|
[29] |
LIU X, CHEN J L, TANG J J, et al. A large volume cubic press with a pressure-generating capability up to about 10 GPa [J]. High Pressure Research, 2012, 32(2): 239–254.
|
[30] |
LIEBERMANN R C. Multi-anvil, high pressure apparatus: a half-century of development and progress [J]. High Pressure Research, 2011, 31(4): 493–532. doi: 10.1080/08957959.2011.618698
|
[31] |
AZUMA M, HOJO H, OKA K, et al. Functional transition metal perovskite oxides with 6s2 lone pair activity stabilized by high-pressure synthesis [J]. Annual Review of Materials Research, 2021, 51: 329–349. doi: 10.1146/annurev-matsci-080819-011831
|
[32] |
BELIK A A, YI W. High-pressure synthesis, crystal chemistry and physics of perovskites with small cations at the A site [J]. Journal of Physics: Condensed Matter, 2014, 26(16): 163201. doi: 10.1088/0953-8984/26/16/163201
|
[33] |
GUIGNARD J, PRAKASAM M, LARGETEAU A. A review of binderless polycrystalline diamonds: focus on the high-pressure-high-temperature sintering process [J]. Materials, 2022, 15(6): 2198. doi: 10.3390/ma15062198
|
[34] |
LYSAKOVSKYI V V, NOVIKOV N V, IVAKHNENKO S A, et al. Growth of structurally perfect diamond single crystals at high pressures and temperatures. review [J]. Journal of Superhard Materials, 2018, 40(5): 315–324. doi: 10.3103/S1063457618050039
|
[35] |
LE GODEC Y, COURAC A, SOLOZHENKO V L. High-pressure synthesis of superhard and ultrahard materials [J]. Journal of Applied Physics, 2019, 126(15): 151102. doi: 10.1063/1.5111321
|
[36] |
SHATSKIY A, KATSURA T, LITASOV K D, et al. High pressure generation using scaled-up Kawai-cell [J]. Physics of the Earth and Planetary Interiors, 2011, 189(1/2): 92–108.
|
[37] |
WALKER D. Lubrication, gasketing, and precision in multianvil experiments [J]. American Mineralogist, 1991, 76(7/8): 1092–1100.
|
[38] |
WANG Y B, DURHAM W B, GETTING I C, et al. The deformation-DIA: a new apparatus for high temperature triaxial deformation to pressures up to 15 GPa [J]. Review of Scientific Instruments, 2003, 74(6): 3002–3011. doi: 10.1063/1.1570948
|
[39] |
TANGE Y, IRIFUNE T, FUNAKOSHI K I. Pressure generation to 80 GPa using multianvil apparatus with sintered diamond anvils [J]. High Pressure Research, 2008, 28(3): 245–254. doi: 10.1080/08957950802208936
|
[40] |
ISHII T, YAMAZAKI D, TSUJINO N, et al. Pressure generation to 65 GPa in a Kawai-type multi-anvil apparatus with tungsten carbide anvils [J]. High Pressure Research, 2017, 37(4): 507–515. doi: 10.1080/08957959.2017.1375491
|
[41] |
ISHII T, LIU Z D, KATSURA T. A breakthrough in pressure generation by a Kawai-type multi-anvil apparatus with tungsten carbide anvils [J]. Engineering, 2019, 5(3): 434–440. doi: 10.1016/j.eng.2019.01.013
|
[42] |
WALKER I R. Nonmagnetic piston–cylinder pressure cell for use at 35 kbar and above [J]. Review of Scientific Instruments, 1999, 70(8): 3402–3412. doi: 10.1063/1.1149927
|
[43] |
KOYAMA-NAKAZAWA K, KOEDA M, HEDO M, et al. In situ pressure calibration for piston cylinder cells via ruby fluorescence with fiber optics [J]. Review of Scientific Instruments, 2007, 78(6): 066109. doi: 10.1063/1.2749451
|
[44] |
NAUMOV P, GUPTA R, BARTKOWIAK M, et al. Optical setup for a piston-cylinder pressure cell: a two-volume approach [J]. Physical Review Applied, 2022, 17(2): 024065. doi: 10.1103/PhysRevApplied.17.024065
|
[45] |
MORI N, TAKAHASHI H, TAKESHITA N. Low-temperature and high-pressure apparatus developed at ISSP, University of Tokyo [J]. High Pressure Research, 2004, 24(1): 225–232.
|
[46] |
CHENG J G, WANG B S, SUN J P, et al. Cubic anvil cell apparatus for high-pressure and low-temperature physical property measurements [J]. Chinese Physics B, 2018, 27(7): 077403. doi: 10.1088/1674-1056/27/7/077403
|
[47] |
JAYARAMAN A. Diamond anvil cell and high-pressure physical investigations [J]. Reviews of Modern Physics, 1983, 55(1): 65–108. doi: 10.1103/RevModPhys.55.65
|
[48] |
O’BANNON III E F, JENEI Z, CYNN H, et al. Contributed review: culet diameter and the achievable pressure of a diamond anvil cell: implications for the upper pressure limit of a diamond anvil cell [J]. Review of Scientific Instruments, 2018, 89(11): 111501.
|
[49] |
SHEN G Y, MAO H K. High-pressure studies with X-rays using diamond anvil cells [J]. Reports on Progress in Physics, 2017, 80(1): 016101. doi: 10.1088/1361-6633/80/1/016101
|
[50] |
MACHAVARIANI G Y, PASTERNAK M P, HEARNE G R, et al. A multipurpose miniature piston-cylinder diamond-anvil cell for pressures beyond 100 GPa [J]. Review of Scientific Instruments, 1998, 69(3): 1423–1425. doi: 10.1063/1.1148775
|
[51] |
GE Y F, YOU C, WANG X L, et al. Pressure calibration method of 28 GPa for large-volume press [J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030201.
|
[52] |
MEGAW H D, DARLINGTON C N W. Geometrical and structural relations in the rhombohedral perovskites [J]. Acta Crystallographica Section A, 1975, 31(2): 161–173. doi: 10.1107/S0567739475000332
|
[53] |
WOODWARD P M. Octahedral tilting in perovskites. Ⅰ. geometrical considerations [J]. Acta Crystallographica Section B, 1997, 53(1): 32–43. doi: 10.1107/S0108768196010713
|
[54] |
ZHANG H, LI N, LI K Y, et al. Structural stability and formability of ABO3-type perovskite compounds [J]. Acta Crystallographica Section B, 2007, 63(6): 812–818. doi: 10.1107/S0108768107046174
|
[55] |
ISLAM M A, RONDINELLI J M, SPANIER J E. Normal mode determination of perovskite crystal structures with octahedral rotations: theory and applications [J]. Journal of Physics: Condensed Matter, 2013, 25(17): 175902. doi: 10.1088/0953-8984/25/17/175902
|
[56] |
TIDROW S C. Mapping comparison of goldschmidt’s tolerance factor with perovskite structural conditions [J]. Ferroelectrics, 2014, 470(1): 13–27. doi: 10.1080/00150193.2014.922372
|
[57] |
RAWAL R, MCQUEEN A J, GILLIE L J, et al. Influence of octahedral tilting on the microwave dielectric properties of A3LaNb3O12 hexagonal perovskites (A=Ba, Sr) [J]. Applied Physics Letters, 2009, 94(19): 192904. doi: 10.1063/1.3129867
|
[58] |
SUN H L, HUO M W, HU X W, et al. Signatures of superconductivity near 80 K in a nickelate under high pressure [J]. Nature, 2023, 621(7979): 493–498. doi: 10.1038/s41586-023-06408-7
|
[59] |
YANG J G, SUN H L, HU X W, et al. Orbital-dependent electron correlation in double-layer nickelate La3Ni2O7 [J]. Nature Communications, 2024, 15(1): 4373. doi: 10.1038/s41467-024-48701-7
|
[60] |
DONG Z H, HUO M W, LI J, et al. Visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7− δ [J]. Nature, 2024, 630(8018): 847–852. doi: 10.1038/s41586-024-07482-1
|
[61] |
WANG X Y, TIAN H, LI X, et al. Pressure-induced topological phase transition and large rashba effect in halide double perovskite [J]. The Journal of Physical Chemistry Letters, 2024, 15(5): 1477–1483. doi: 10.1021/acs.jpclett.3c03432
|
[62] |
ZHANG H B, HUANG H Q, HAULE K, et al. Quantum anomalous Hall phase in (001) double-perovskite monolayers via intersite spin-orbit coupling [J]. Physical Review B, 2014, 90(16): 165143. doi: 10.1103/PhysRevB.90.165143
|
[63] |
ZHANG X W, ABDALLA L B, LIU Q H, et al. The enabling electronic motif for topological insulation in ABO3 perovskites [J]. Advanced Functional Materials, 2017, 27(37): 1701266. doi: 10.1002/adfm.201701266
|
[64] |
BHATTI H S, HUSSAIN S T, KHAN F A, et al. Synthesis and induced multiferroicity of perovskite PbTiO3: a review [J]. Applied Surface Science, 2016, 367: 291–306. doi: 10.1016/j.apsusc.2016.01.164
|
[65] |
COHEN R E, KRAKAUER H. Electronic structure studies of the differences in ferroelectric behavior of BaTiO3 and PbTiO3 [J]. Ferroelectrics, 1992, 136(1): 65–83.
|
[66] |
BHIDE V G, DESHMUKH K G, HEGDE M S. Ferroelectric properties of PbTiO3 [J]. Physica, 1962, 28(9): 871–876. doi: 10.1016/0031-8914(62)90075-7
|
[67] |
SHPANCHENKO R V, CHERNAYA V V, TSIRLIN A A, et al. Synthesis, structure, and properties of new perovskite PbVO3 [J]. Chemistry of Materials, 2004, 16(17): 3267–3273. doi: 10.1021/cm049310x
|
[68] |
YAMAMOTO H, IMAI T, SAKAI Y, et al. Colossal negative thermal expansion in electron-doped PbVO3 perovskites [J]. Angewandte Chemie International Edition, 2018, 57(27): 8170–8173.
|
[69] |
OKA K, YAMAUCHI T, KANUNGO S, et al. Experimental and theoretical studies of the metallic conductivity in cubic PbVO3 under high pressure [J]. Journal of the Physical Society of Japan, 2018, 87(2): 024801.
|
[70] |
OKA K, YAMADA I, AZUMA M, et al. Magnetic ground-state of perovskite PbVO3 with large tetragonal distortion [J]. Inorganic Chemistry, 2008, 47(16): 7355–7359.
|
[71] |
ARÉVALO-LÓPEZ Á M, ALARIO-FRANCO M Á. On the structure and microstructure of “PbCrO3” [J]. Journal of Solid State Chemistry, 2007, 180(11): 3271–3279. doi: 10.1016/j.jssc.2007.09.017
|
[72] |
XIAO W S, TAN D Y, XIONG X L, et al. Large volume collapse observed in the phase transition in cubic PbCrO3 perovskite [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(32): 14026–14029.
|
[73] |
AREVALO-LOPEZ A M, DOS SANTOS-GARCIA A J, ALARIO-FRANCO M A. Antiferromagnetism and spin reorientation in “PbCrO3” [J]. Inorganic Chemistry, 2009, 48(12): 5434–5438. doi: 10.1021/ic900423w
|
[74] |
ZHAO J F, HAW S C, WANG X, et al. Stability of the Pb divalent state in insulating and metallic PbCrO3 [J]. Physical Review B, 2023, 107(2): 024107.
|
[75] |
LI X, HU Z W, CHO Y, et al. Charge disproportionation and complex magnetism in a PbMnO3 perovskite synthesized under high pressure [J]. Chemistry of Materials, 2021, 33(1): 92–101. doi: 10.1021/acs.chemmater.0c02706
|
[76] |
TSUCHIYA T, SAITO H, YOSHIDA M, et al. High-pressure synthesis of a novel PbFeO3 [J]. MRS Online Proceedings Library, 2006, 988(1): 9880916.
|
[77] |
YE X B, ZHAO J F, DAS H, et al. Observation of novel charge ordering and spin reorientation in perovskite oxide PbFeO3 [J]. Nature Communications, 2021, 12(1): 1917. doi: 10.1038/s41467-021-22064-9
|
[78] |
SAKAI Y, YANG J Y, YU R Z, et al. A-site and B-site charge orderings in an s-d level controlled perovskite oxide PbCoO3 [J]. Journal of the American Chemical Society, 2017, 139(12): 4574–4581. doi: 10.1021/jacs.7b01851
|
[79] |
LIU Z H, SAKAI Y, YANG J Y, et al. Sequential spin state transition and intermetallic charge transfer in PbCoO3 [J]. Journal of the American Chemical Society, 2020, 142(12): 5731–5741. doi: 10.1021/jacs.9b13508
|
[80] |
HARIKI A, AHN K H, KUNEŠ J. Valence skipping, internal doping, and site-selective Mott transition in PbCoO3 under pressure [J]. Physical Review B, 2021, 104(23): 235101. doi: 10.1103/PhysRevB.104.235101
|
[81] |
LOU F, LUO W, FENG J S, et al. Genetic algorithm prediction of pressure-induced multiferroicity in the perovskite PbCoO3 [J]. Physical Review B, 2019, 99(20): 205104. doi: 10.1103/PhysRevB.99.205104
|
[82] |
INAGUMA Y, TANAKA K, TSUCHIYA T, et al. Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures [J]. Journal of the American Chemical Society, 2011, 133(42): 16920–16929. doi: 10.1021/ja206247j
|
[83] |
HAO X F, STROPPA A, BARONE P, et al. Structural and ferroelectric transitions in magnetic nickelate PbNiO3 [J]. New Journal of Physics, 2014, 16(1): 015030. doi: 10.1088/1367-2630/16/1/015030
|
[84] |
WANG W D, WANG S M, HE D W, et al. Pressure induced phase transition of PbNiO3 from LiNbO3-type to perovskite [J]. Solid State Communications, 2014, 196: 8–12. doi: 10.1016/j.ssc.2014.06.022
|
[85] |
JIN C Q, ZHOU J S, GOODENOUGH J B, et al. High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A=Ca, Sr, Ba) ruthenates [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(20): 7115–7119.
|
[86] |
ZHOU J S, MATSUBAYASHI K, UWATOKO Y, et al. Critical behavior of the ferromagnetic perovskite BaRuO3 [J]. Physical Review Letters, 2008, 101(7): 077206. doi: 10.1103/PhysRevLett.101.077206
|
[87] |
JENG H T, LIN S H, HSUE C S. Orbital ordering and Jahn-Teller distortion in perovskite ruthenate SrRuO3 [J]. Physical Review Letters, 2006, 97(6): 067002. doi: 10.1103/PhysRevLett.97.067002
|
[88] |
ZHONG G H, LI Y L, LIU Z, et al. Ground state properties of perovskite and post-perovskite CaRuO3: ferromagnetism reduction [J]. Solid State Sciences, 2010, 12(12): 2003–2009. doi: 10.1016/j.solidstatesciences.2010.08.017
|
[89] |
KOJITANI H, SHIRAKO Y, AKAOGI M. Post-perovskite phase transition in CaRuO3 [J]. Physics of the Earth and Planetary Interiors, 2007, 165(3/4): 127–134.
|
[90] |
CHENG J G, ALONSO J A, SUARD E, et al. A new perovskite polytype in the high-pressure sequence of BaIrO3 [J]. Journal of the American Chemical Society, 2009, 131(21): 7461–7469. doi: 10.1021/ja901829e
|
[91] |
CHENG J G, ISHII T, KOJITANI H, et al. High-pressure synthesis of the BaIrO3 perovskite: a Pauli paramagnetic metal with a Fermi liquid ground state [J]. Physical Review B, 2013, 88(20): 205114. doi: 10.1103/PhysRevB.88.205114
|
[92] |
KOC H, MAMEDOV A M, OZBAY E. Electronic structure of conventional slater type antiferromagnetic insulators: AIrO3 (A=Sr, Ba) perovskites [J]. Journal of Physics: Conference Series, 2022, 2315: 012033. doi: 10.1088/1742-6596/2315/1/012033
|
[93] |
ZHAO J G, YANG L X, YU Y, et al. High-pressure synthesis of orthorhombic SrIrO3 perovskite and its positive magnetoresistance [J]. Journal of Applied Physics, 2008, 103(10): 103706. doi: 10.1063/1.2908879
|
[94] |
DOBSON D P, HUNT S A, LINDSAY-SCOTT A, et al. Towards better analogues for MgSiO3 post-perovskite: NaCoF3 and NaNiF3, two new recoverable fluoride post-perovskites [J]. Physics of the Earth and Planetary Interiors, 2011, 189(3/4): 171–175.
|
[95] |
SHIRAKO Y, SHI Y G, AIMI A, et al. High-pressure stability relations, crystal structures, and physical properties of perovskite and post-perovskite of NaNiF3 [J]. Journal of Solid State Chemistry, 2012, 191: 167–174. doi: 10.1016/j.jssc.2012.03.004
|
[96] |
LINDSAY-SCOTT A, DOBSON D, NESTOLA F, et al. Time-of-flight neutron powder diffraction with milligram samples: the crystal structures of NaCoF3 and NaNiF3 post-perovskites [J]. Journal of Applied Crystallography, 2014, 47(6): 1939–1947. doi: 10.1107/S1600576714021803
|
[97] |
YUSA H, SHIRAKO Y, AKAOGI M, et al. Perovskite-to-postperovskite transitions in NaNiF3 and NaCoF3 and disproportionation of NaCoF3 postperovskite under high pressure and high temperature [J]. Inorganic Chemistry, 2012, 51(12): 6559–6566. doi: 10.1021/ic300118d
|
[98] |
GARCIA-CASTRO A C, SPALDIN N A, ROMERO A H, et al. Geometric ferroelectricity in fluoroperovskites [J]. Physical Review B, 2014, 89(10): 104107. doi: 10.1103/PhysRevB.89.104107
|
[99] |
AKAOGI M, SHIRAKO Y, KOJITANI H, et al. High-pressure transitions in NaZnF3 and NaMnF3 perovskites, and crystal-chemical characteristics of perovskite-postperovskite transitions in ABX3 fluorides and oxides [J]. Physics of the Earth and Planetary Interiors, 2014, 228: 160–169. doi: 10.1016/j.pepi.2013.09.001
|
[100] |
FUCHS S, DEY T, ASLAN-CANSEVER G, et al. Unraveling the nature of magnetism of the 5d4 double perovskite Ba2YIrO6 [J]. Physical Review Letters, 2018, 120(23): 237204. doi: 10.1103/PhysRevLett.120.237204
|
[101] |
PRAMANICK A, DMOWSKI W, EGAMI T, et al. Stabilization of polar nanoregions in Pb-free ferroelectrics [J]. Physical Review Letters, 2018, 120(20): 207603. doi: 10.1103/PhysRevLett.120.207603
|
[102] |
YADA H, IJIRI Y, UEMURA H, et al. Enhancement of photoinduced charge-order melting via anisotropy control by double-pulse excitation in perovskite manganites: Pr0.6Ca0.4MnO3 [J]. Physical Review Letters, 2016, 116(7): 076402. doi: 10.1103/PhysRevLett.116.076402
|
[103] |
LI X, XU W M, MCGUIRE M A, et al. Spin freezing into a disordered state in CaFeTi2O6 synthesized under high pressure [J]. Physical Review B, 2018, 98(6): 064201. doi: 10.1103/PhysRevB.98.064201
|
[104] |
LEINENWEBER K, PARISE J. High-pressure synthesis and crystal structure of CaFeTi2O6, a new perovskite structure type [J]. Journal of Solid State Chemistry, 1995, 114(1): 277–281. doi: 10.1006/jssc.1995.1040
|
[105] |
KOBAYASHI K I, KIMURA T, SAWADA H, et al. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure [J]. Nature, 1998, 395(6703): 677–680. doi: 10.1038/27167
|
[106] |
MENEGHINI C, RAY S, LISCIO F, et al. Nature of “Disorder” in the ordered double perovskite Sr2FeMoO6 [J]. Physical Review Letters, 2009, 103(4): 046403. doi: 10.1103/PhysRevLett.103.046403
|
[107] |
RAY S, KUMAR A, SARMA D D, et al. Electronic and magnetic structures of Sr2FeMoO6 [J]. Physical Review Letters, 2001, 87(9): 097204. doi: 10.1103/PhysRevLett.87.097204
|
[108] |
RETUERTO M, MARTÍNEZ-LOPE M J, GARCÍA-HERNÁNDEZ M, et al. High-pressure synthesis of the double perovskite Sr2FeMoO6: increment of the cationic ordering and enhanced magnetic properties [J]. Journal of Physics: Condensed Matter, 2009, 21(18): 186003. doi: 10.1088/0953-8984/21/18/186003
|
[109] |
LENG K, TANG Q K, WU Z W, et al. Double perovskite Sr2FeReO6 oxides: structural, dielectric, magnetic, electrical, and optical properties [J]. Journal of the American Ceramic Society, 2022, 105(6): 4097–4107. doi: 10.1111/jace.18367
|
[110] |
RETUERTO M, MARTÍNEZ-LOPE M J, GARCÍA-HERNÁNDEZ M, et al. Curie temperature enhancement in partially disordered Sr2FeReO6 double perovskites [J]. Materials Research Bulletin, 2009, 44(6): 1261–1264. doi: 10.1016/j.materresbull.2009.01.018
|
[111] |
KAWAKAMI T, SEKIYA Y, MIMURA A, et al. Two-step suppression of charge disproportionation in CaCu3Fe4O12 under high pressure [J]. Journal of the Physical Society of Japan, 2016, 85(3): 034716. doi: 10.7566/JPSJ.85.034716
|
[112] |
HAO X F, XU Y H, GAO F M, et al. Charge disproportionation in CaCu3Fe4O12 [J]. Physical Review B, 2009, 79(11): 113101. doi: 10.1103/PhysRevB.79.113101
|
[113] |
YAMADA I, MURAKAMI M, HAYASHI N, et al. Inverse charge transfer in the quadruple perovskite CaCu3Fe4O12 [J]. Inorganic Chemistry, 2016, 55(4): 1715–1719. doi: 10.1021/acs.inorgchem.5b02623
|
[114] |
BUITRAGO I R, VENTURA C I, ALLUB R. Phase diagram description of the CaCu3Fe4O12 double perovskite [J]. Journal of Applied Physics, 2018, 124(4): 045103. doi: 10.1063/1.5032206
|
[115] |
LONG Y W, HAYASHI N, SAITO T, et al. Temperature-induced A-B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite [J]. Nature, 2009, 458(7234): 60–63. doi: 10.1038/nature07816
|
[116] |
YAMADA I, TSUCHIDA K, OHGUSHI K, et al. Giant negative thermal expansion in the iron perovskite SrCu3Fe4O12 [J]. Angewandte Chemie International Edition, 2011, 50(29): 6579–6582. doi: 10.1002/anie.201102228
|
[117] |
YAMADA I, SHIRO K, ETANI H, et al. Valence transitions in negative thermal expansion material SrCu3Fe4O12 [J]. Inorganic Chemistry, 2014, 53(19): 10563–10569. doi: 10.1021/ic501665c
|
[118] |
YAMADA I, SHIRO K, OKA K, et al. Direct observation of negative thermal expansion in SrCu3Fe4O12 [J]. Journal of the Ceramic Society of Japan, 2013, 121(1418): 912–914. doi: 10.2109/jcersj2.121.912
|
[119] |
KAWAKAMI T, MIMURA A, ISHII M, et al. Pressure-induced intersite charge transfer in SrCu3Fe4O12 [J]. Journal of the Physical Society of Japan, 2019, 88(6): 064704. doi: 10.7566/JPSJ.88.064704
|
[120] |
HOMES C C, VOGT T, SHAPIRO S M, et al. Optical response of high-dielectric-constant perovskite-related oxide [J]. Science, 2001, 293(5530): 673–676. doi: 10.1126/science.1061655
|
[121] |
KOITZSCH A, BLUMBERG G, GOZAR A, et al. Antiferromagnetism in CaCu3Ti4O12 studied by magnetic Raman spectroscopy [J]. Physical Review B, 2002, 65(5): 052406. doi: 10.1103/PhysRevB.65.052406
|
[122] |
YAN D Z, WANG J X, XIANG J W, et al. A flexoelectricity-enabled ultrahigh piezoelectric effect of a polymeric composite foam as a strain-gradient electric generator [J]. Science Advances, 2023, 9(2): eadc8845. doi: 10.1126/sciadv.adc8845
|
[123] |
MORI D, SHIMOI M, KATO Y, et al. High-pressure synthesis, structure, dielectric and magnetic properties for SrCu3Ti4O12 [J]. Ferroelectrics, 2011, 414(1): 180–189. doi: 10.1080/00150193.2011.577336
|
[1] | SUN Hao, YE Pengda, LIU Yuwei, JIN Meiling, LI Xiang. High-Pressure Synthesis of Copper-Based Rare-Earth Perovskite La1–xNdxCuO3 (0≤x≤1)[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 010104. doi: 10.11858/gywlxb.20230784 |
[2] | YU Runze. High Pressure Synthesis and Physical Properties Investigation of Pb-Based Simple Perovskite Oxides PbMO3 (M=3d transition metals)[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 010102. doi: 10.11858/gywlxb.20230786 |
[3] | ZHU Zhikai, LI Zhongyang, KONG Lingping, LIU Gang. Recent Progress on Structural and Functional Evolutions of Metal Halide Perovskites under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050101. doi: 10.11858/gywlxb.20230768 |
[4] | ZHAO Jinggeng. Crystal Structure and Physica Properties of Perovskite Oxide BaMO3 (M Being Transition Metal)[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050103. doi: 10.11858/gywlxb.20240753 |
[5] | FA Zhixiang, WANG Wendan, LI Ao, YU Shaonan, WANG Liping. Compression Behavior of Tetragonal PbTeO3 Crystals under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 011102. doi: 10.11858/gywlxb.20220646 |
[6] | LIU Yan, LI Da, CUI Tian. Abnormal Properties of Halogen Compounds under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 060102. doi: 10.11858/gywlxb.20220672 |
[7] | MIAO Yu, LIU Siyuan, MA Xuejiao, JIN Zhexue. Theoretical Simulation and Physical Properties of MgN8 Crystal Structure under High Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011102. doi: 10.11858/gywlxb.20190818 |
[8] | WEN Xinzhu, PENG Yuyan, LIU Mingzhen. First-Principles Study on Structural Stability of Perovskite ZrBeO3[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011202. doi: 10.11858/gywlxb.20190802 |
[9] | JI Cheng, LI Bing, YANG Wenge, MAO Ho-kwang. Crystallographic Studies of Ultra-dense Solid Hydrogen[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 020101. doi: 10.11858/gywlxb.20200520 |
[10] | LI Xin, MA Xuejiao, GAO Wenquan, LIU Yanhui. Evolution of Crystal Structures and Electronic Properties for Ir2P under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 011103. doi: 10.11858/gywlxb.20180645 |
[11] | YANG Longxing, LIU Lei, LIU Hong, YI Li, GU Xiaoyu. Structure and Elasticity of Garnet under High Pressure by First-Principles Simulation[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060104. doi: 10.11858/gywlxb.20190785 |
[12] | SUN Ying, ZHONG Xin, LÜ Jian, MA Yanming. Pressure-Induced Metallization and Novel Superconductivity of Chalcogen Hydrides[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010102. doi: 10.11858/gywlxb.20170629 |
[13] | LI Xiaoyang, LU Yang, YAN Hao. Electrical Transport Properties of Hexagonal TaSi2 Crystals Based on Structural Stability under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 021102. doi: 10.11858/gywlxb.20170571 |
[14] | XU Cong, SUN Fei, YANG Wen-Ge. High Pressure Effect on the Structure and Ionic Conductivity in Layered Cobaltite LiCoO2[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 529-534. doi: 10.11858/gywlxb.2017.05.004 |
[15] | LI Quan, MA Yan-Ming. High Pressure Dissociation of Typical Diatomic Molecular Solids and Their Atomic Phases[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 313-324. doi: 10.11858/gywlxb.2013.03.001 |
[16] | LIU Lei, LI Xiao-Dong, LI Yan-Chun, TANG Ling-Yun, LIU Jing, BI Yan. The High Pressure Structure and Isothermal Equation of State of NiO up to 67 GPa[J]. Chinese Journal of High Pressure Physics, 2009, 23(3): 209-214 . doi: 10.11858/gywlxb.2009.03.008 |
[17] | ZHANG Jian-Ming, ZHANG Wei-Gang, WANG Ya-Wei, WANG Xiao-Dong. Study on High Pressure Physical Properties of Diesel Oil[J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 41-44 . doi: 10.11858/gywlxb.2005.01.008 |
[18] | SONG Gong-Bao, LIANG Jing-Kui, RAO Guang-Hui. Subsolidus Phase Relation and Crystal Structure in the Pr1-xBa2-yCax+yCu3O7 System[J]. Chinese Journal of High Pressure Physics, 2004, 18(4): 309-314 . doi: 10.11858/gywlxb.2004.04.004 |
[19] | SONG Gong-Bao, HAN Cang-Qiong, LIANG Jing-Kui, RAO Guang-Hui. The Extent and Crystal Structure of the Solid Solution Based on Ca2Pr2Cu5O10[J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 27-35 . doi: 10.11858/gywlxb.2004.01.006 |
[20] | GU Hui-Cheng, CHEN Liang-Chen, CHU Jun-Hao, BAO Zhong-Xing, LIU Ke-Yue, WANG Jin-Yi, ZHENG Kang-Li. Structures and the Equation of State of Hg1-xCdxTe under High Pressure[J]. Chinese Journal of High Pressure Physics, 2000, 14(4): 298-301 . doi: 10.11858/gywlxb.2000.04.011 |