Citation: | HUANG Youqi, SHI Liutong, GAO Yubo, LI Zhihao, HUANG Aoxiang. Damage Mechanism of Glass Composite Armor Subjected to Projectile at High Impact Velocity[J]. Chinese Journal of High Pressure Physics, 2025, 39(2): 024101. doi: 10.11858/gywlxb.20240836 |
[1] |
韩国庆, 张先锋, 谈梦婷, 等. 透明陶瓷材料冲击响应特性及损伤演化规律研究 [J]. 力学进展, 2023, 53(3): 497–560. doi: 10.6052/1000-0992-23-007
HAN G Q, ZHANG X F, TAN M T, et al. Research on impact response characteristics and damage evolution law of transparent ceramics [J]. Advances in Mechanics, 2023, 53(3): 497–560. doi: 10.6052/1000-0992-23-007
|
[2] |
KLEMENT R, ROLC S, MIKULIKOVA R, et al. Transparent armour materials [J]. Journal of the European Ceramic Society, 2008, 28(5): 1091–1095. doi: 10.1016/j.jeurceramsoc.2007.09.036
|
[3] |
牛欢欢, 张英杰, 李志强. 爆炸载荷下中空钢化夹层玻璃的动态响应 [J]. 高压物理学报, 2021, 35(6): 064102. doi: 10.11858/gywlxb.20210764
NIU H H, ZHANG Y J, LI Z Q. Dynamic response of hollow tempered laminated glass under explosive load [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064102. doi: 10.11858/gywlxb.20210764
|
[4] |
GRUJICIC M, BELL W C, PANDURANGAN B. Design and material selection guidelines and strategies for transparent armor systems [J]. Materials & Design, 2012, 34: 808–819. doi: 10.1016/j.matdes.2011.07.007
|
[5] |
XU J, LI Y B, LIU B H, et al. Experimental study on mechanical behavior of PVB laminated glass under quasi-static and dynamic loadings [J]. Composites Part B: Engineering, 2011, 42(2): 302–308. doi: 10.1016/j.compositesb.2010.10.009
|
[6] |
LI D, ZHANG H Y, LEI X W, et al. Three-stage breakage model for laminated glass plate under low-velocity impact [J]. Ceramics International, 2023, 49(2): 2648–2662. doi: 10.1016/j.ceramint.2022.09.245
|
[7] |
CHEN J J, XU J, YAO X F, et al. Experimental investigation on the radial and circular crack propagation of PVB laminated glass subject to dynamic out-of-plane loading [J]. Engineering Fracture Mechanics, 2013, 112/113: 26–40. doi: 10.1016/j.engfracmech.2013.09.010
|
[8] |
WANG X E, YANG J, LIU Q, et al. Experimental investigations into SGP laminated glass under low velocity impact [J]. International Journal of Impact Engineering, 2018, 122: 91–108. doi: 10.1016/j.ijimpeng.2018.06.010
|
[9] |
CAI L, ZHANG Y Q, WEI X R, et al. Study on the effect of different sandwich materials on the impact resistance of laminated glass [J]. Construction and Building Materials, 2022, 360: 129603. doi: 10.1016/j.conbuildmat.2022.129603
|
[10] |
邓佳杰, 章健, 张先锋, 等. YAG透明陶瓷复合靶抗弹机理研究 [J]. 北京理工大学学报, 2022, 42(6): 620–628. doi: 10.15918/j.tbit1001-0645.2021.230
DENG J J, ZHANG J, ZHANG X F, et al. Investigation on bullet proof mechanism of YAG transparent ceramic composite targets [J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 620–628. doi: 10.15918/j.tbit1001-0645.2021.230
|
[11] |
刘滢, 黄君伟, 郭新涛, 等. MgAl2O4透明陶瓷复合结构抗弹性能的数值模拟研究 [J]. 稀有金属, 2023, 47(4): 529–537. doi: 10.13373/j.cnki.cjrm.XY20110010
LIU Y, HUANG J W, GUO X T, et al. Numerical simulation of ballistic resistance of MgAl2O4 transparent laminate structure [J]. Chinese Journal of Rare Metals, 2023, 47(4): 529–537. doi: 10.13373/j.cnki.cjrm.XY20110010
|
[12] |
WANG X E, MENG Y R, YANG J, et al. Optimal kernel extreme learning machine model for predicting the fracture state and impact response of laminated glass panels [J]. Thin-Walled Structures, 2021, 162: 107541. doi: 10.1016/j.tws.2021.107541
|
[13] |
VEDRTNAM A, PAWAR S J. Experimental and simulation studies on fracture and adhesion test of laminated glass [J]. Engineering Fracture Mechanics, 2018, 190: 461–470. doi: 10.1016/j.engfracmech.2017.12.044
|
[14] |
OSNES K, HOLMEN J K, GRUE T, et al. Perforation of laminated glass: an experimental and numerical study [J]. International Journal of Impact Engineering, 2021, 156: 103922. doi: 10.1016/j.ijimpeng.2021.103922
|
[15] |
STRASSBURGER E, BAUER S, POPKO G. Damage visualization and deformation measurement in glass laminates during projectile penetration [J]. Defence Technology, 2014, 10(2): 226–238. doi: 10.1016/j.dt.2014.05.008
|
[16] |
GAO Y B, LI D C, ZHANG W, et al. Constitutive modelling of the TiB2-B4C composite by experiments, simulation and neutral network [J]. International Journal of Impact Engineering, 2019, 132: 103310. doi: 10.1016/j.ijimpeng.2019.05.024
|
[17] |
贾哲. 弹道冲击下防弹玻璃的损伤机理和抗侵彻性能研究 [D]. 太原: 中北大学, 2023: 21–33.
JIA Z. Study on damage mechanism and anti-penetration performance of bulletproof glass under ballistic impact [D]. Taiyuan: North University of China, 2023: 21–33.
|
[18] |
SPATHIS G D. Polyurethane elastomers studied by the Mooney-Rivlin equation for rubbers [J]. Journal of Applied Polymer Science, 1991, 43(3): 613–620. doi: 10.1002/app.1991.070430323
|
[19] |
SARIKAYA M, GÜDEN M, KAMBUR Ç, et al. Development of the Johnson-Cook flow stress and damage parameters for the impact response of polycarbonate: experimental and numerical approach [J]. International Journal of Impact Engineering, 2023, 179: 104674. doi: 10.1016/j.ijimpeng.2023.104674
|
[20] |
刘赛, 张伟贵, 吕振华. 穿甲燃烧弹侵彻陶瓷复合装甲和玻璃复合装甲的FEM-SPH耦合计算模型 [J]. 爆炸与冲击, 2021, 41(1): 014201. doi: 10.11883/bzycj-2020-0069
LIU S, ZHANG W G, LU Z H. An FEM-SPH coupled model for simulating penetration of armor-piercing bullets into ceramic composite armors and glass composite armors [J]. Explosion and Shock Waves, 2021, 41(1): 014201. doi: 10.11883/bzycj-2020-0069
|
[21] |
MOHAGHEGHIAN I, CHARALAMBIDES M N, WANG Y, et al. Effect of the polymer interlayer on the high-velocity soft impact response of laminated glass plates [J]. International Journal of Impact Engineering, 2018, 120: 150–170. doi: 10.1016/j.ijimpeng.2018.06.002
|