Volume 38 Issue 4
Jul 2024
Turn off MathJax
Article Contents
LIU Jingyi, WU Binbin, TAO Yu, PU Meifang, ZHOU Chunyin, LEI Li. On the Existence of Layered Polymeric Nitrogen[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040105. doi: 10.11858/gywlxb.20240821
Citation: LIU Jingyi, WU Binbin, TAO Yu, PU Meifang, ZHOU Chunyin, LEI Li. On the Existence of Layered Polymeric Nitrogen[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040105. doi: 10.11858/gywlxb.20240821

On the Existence of Layered Polymeric Nitrogen

doi: 10.11858/gywlxb.20240821
  • Received Date: 31 May 2024
  • Rev Recd Date: 19 Jun 2024
  • Available Online: 16 Jul 2024
  • Issue Publish Date: 25 Jul 2024
  • Under the extreme conditions of high temperature and high pressure, molecular crystal nitrogen breaks the traditional three-bond mechanism and transforms into a single-bond polymerization state. The unique dissociation mechanism of nitrogen under high pressure makes the research significance of polymeric nitrogen beyond the scope of energetic materials, and also has profound scientific significance in the field of fundamental physics. Following the cubic gauche polymeric nitrogen cg-N (space group I213), the second experimentally discovered layered structure polymeric nitrogen LP-N (space group Pba2) has been controversial. The main problem is that, in addition to not being verified by other high-pressure X-ray diffraction experiments, LP-N structure has the similar synthesis temperature and pressure conditions and synthesis pathways, as well as almost the same Raman spectral characteristics as the subsequently discovered black phosphorus structure polymeric nitrogen BP-N (space group Cmca). The high-temperature and high-pressure synthesis of LP-N is likely to have a unique phase transition kinetic barrier. In this work, we started from the low-temperature solid-state molecular nitrogen λ-N2, used double-sided laser-heated diamond anvil cell (LHDAC) technology, combined with high-pressure X-ray diffraction based on the synchrotron radiation and high-pressure Raman scattering spectroscopy, supplemented by first-principles calculations, and observed the Pba2 structure of polymeric nitrogen LP-N at the conditions of about 141 GPa and about 2600 K. Combined with first-principles calculations, we compared and analyzed its pressure-dependent evolution of the volume per atom (p-V curve) and discussed the kinetic factors of LP-N synthesis at high temperature and high pressure. In addition to a more comprehensive understanding of LP-N, this paper further reveals the high-pressure path-dependent characteristics of polymeric nitrogen.

     

  • loading
  • [1]
    JORDAN T H, SMITH H W, STREIB W E, et al. Single-crystal X-ray diffraction studies of α-N2 and β-N2 [J]. The Journal of Chemical Physics, 1964, 41(3): 756–759. doi: 10.1063/1.1725956
    [2]
    STREIB W E, JORDAN T H, LIPSCOMB W N. Single-crystal X-ray diffraction study of β nitrogen [J]. The Journal of Chemical Physics, 1962, 37(12): 2962–2965. doi: 10.1063/1.1733125
    [3]
    SCHUCH A F, MILLS R L. Crystal structures of the three modifications of nitrogen 14 and nitrogen 15 at high pressure [J]. The Journal of Chemical Physics, 1970, 52(12): 6000–6008. doi: 10.1063/1.1672899
    [4]
    CROMER D T, MILLS R L, SCHIFERI D, et al. The structure of N2 at 49 kbar and 299 K [J]. Acta Crystallographica Section B, 1981, 37(1): 8–11. doi: 10.1107/S0567740881002070
    [5]
    OLIJNYK H. High pressure X-ray diffraction studies on solid N2 up to 43.9 GPa [J]. The Journal of Chemical Physics, 1990, 93(12): 8968–8972. doi: 10.1063/1.459236
    [6]
    LANIEL D, TRYBEL F, ASLANDUKOV A, et al. Structure determination of ζ-N2 from single-crystal X-ray diffraction and theoretical suggestion for the formation of amorphous nitrogen [J]. Nature Communications, 2023, 14(1): 6207. doi: 10.1038/s41467-023-41968-2
    [7]
    GREGORYANZ E, GONCHAROV A F, HEMLEY R J, et al. Raman, infrared, and X-ray evidence for new phases of nitrogen at high pressures and temperatures [J]. Physical Review B, 2002, 66(22): 224108. doi: 10.1103/PhysRevB.66.224108
    [8]
    GREGORYANZ E, GONCHAROV A F, SANLOUP C, et al. High P-T transformations of nitrogen to 170 GPa [J]. The Journal of Chemical Physics, 2007, 126(18): 184505. doi: 10.1063/1.2723069
    [9]
    GREGORYANZ E, GONCHAROV A F, HEMLEY R J, et al. High-pressure amorphous nitrogen [J]. Physical Review B, 2001, 64(5): 052103. doi: 10.1103/PhysRevB.64.052103
    [10]
    FROST M, HOWIE R T, DALLADAY-SIMPSON P, et al. Novel high-pressure nitrogen phase formed by compression at low temperature [J]. Physical Review B, 2016, 93(2): 024113. doi: 10.1103/PhysRevB.93.024113
    [11]
    LIU S, PU M F, TANG Q Q, et al. Raman spectroscopy and phase stability of λ-N2 [J]. Solid State Communications, 2020, 310: 113843. doi: 10.1016/j.ssc.2020.113843
    [12]
    EREMETS M I, GAVRILIUK A G, TROJAN I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Materials, 2004, 3(8): 558–563. doi: 10.1038/nmat1146
    [13]
    TOMASINO D, KIM M, SMITH J, et al. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity [J]. Physical Review Letters, 2014, 113(20): 205502. doi: 10.1103/PhysRevLett.113.205502
    [14]
    LEI L, TANG Q Q, ZHANG F, et al. Evidence for a new extended solid of nitrogen [J]. Chinese Physics Letters, 2020, 37(6): 068101. doi: 10.1088/0256-307X/37/6/068101
    [15]
    LANIEL D, GENESTE G, WECK G, et al. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa [J]. Physical Review Letters, 2019, 122(6): 066001. doi: 10.1103/PhysRevLett.122.066001
    [16]
    LANIEL D, WINKLER B, FEDOTENKO T, et al. High-pressure polymeric nitrogen allotrope with the black phosphorus structure [J]. Physical Review Letters, 2020, 124(21): 216001. doi: 10.1103/PhysRevLett.124.216001
    [17]
    JI C, ADELEKE A A, YANG L X, et al. Nitrogen in black phosphorus structure [J]. Science Advances, 2020, 6(23): eaba9206. doi: 10.1126/sciadv.aba9206
    [18]
    IOTA V, YOO C S, CYNN H. Quartzlike carbon dioxide: an optically nonlinear extended solid at high pressures and temperatures [J]. Science, 1999, 283(5407): 1510–1513. doi: 10.1126/science.283.5407.1510
    [19]
    YAN J W, TÓTH O, XU W, et al. High-pressure structural evolution of disordered polymeric CS2 [J]. The Journal of Physical Chemistry Letters, 2021, 12(30): 7229–7235. doi: 10.1021/acs.jpclett.1c01762
    [20]
    BERNARD S, CHIAROTTI G L, SCANDOLO S, et al. Decomposition and polymerization of solid carbon monoxide under pressure [J]. Physical Review Letters, 1998, 81(10): 2092–2095. doi: 10.1103/PhysRevLett.81.2092
    [21]
    ZHANG H C, TÓTH O, LIU X D, et al. Pressure-induced amorphization and existence of molecular and polymeric amorphous forms in dense SO2 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(16): 8736–8742. doi: 10.1073/pnas.1917749117
    [22]
    CHRISTE K O. Recent advances in the chemistry of ${{\mathrm{N}}_5^+} $ , ${{\mathrm{N}}_5^- }$ and high-oxygen compounds [J]. Propellants, Explosives, Pyrotechnics, 2007, 32(3): 194–204. doi: 10.1002/prep.200700020
    [23]
    NELLIS W J, HOLMES N C, MITCHELL A C, et al. Phase transition in fluid nitrogen at high densities and temperatures [J]. Physical Review Letters, 1984, 53(17): 1661–1664. doi: 10.1103/PhysRevLett.53.1661
    [24]
    MCMAHAN A K, LESAR R. Pressure dissociation of solid nitrogen under 1 Mbar [J]. Physical Review Letters, 1985, 54(17): 1929–1932. doi: 10.1103/PhysRevLett.54.1929
    [25]
    MARTIN R M, NEEDS R J. Theoretical study of the molecular-to-nonmolecular transformation of nitrogen at high pressures [J]. Physical Review B, 1986, 34(8): 5082–5092. doi: 10.1103/PhysRevB.34.5082
    [26]
    REICHLIN R, SCHIFERL D, MARTIN S, et al. Optical studies of nitrogen to 130 GPa [J]. Physical Review Letters, 1985, 55(14): 1464–1467. doi: 10.1103/PhysRevLett.55.1464
    [27]
    MAILHIOT C, YANG L H, MCMAHAN A K. Polymeric nitrogen [J]. Physical Review B, 1992, 46(22): 14419–14435. doi: 10.1103/PhysRevB.46.14419
    [28]
    EREMETS M I, HEMLEY R J, MAO H K, et al. Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability [J]. Nature, 2001, 411(6834): 170–174. doi: 10.1038/35075531
    [29]
    GONCHAROV A F, GREGORYANZ E, MAO H K, et al. Optical evidence for a nonmolecular phase of nitrogen above 150 GPa [J]. Physical Review Letters, 2000, 85(6): 1262–1265. doi: 10.1103/PhysRevLett.85.1262
    [30]
    WANG X L, WANG Y C, MIAO M S, et al. Cagelike diamondoid nitrogen at high pressures [J]. Physical Review Letters, 2012, 109(17): 175502. doi: 10.1103/PhysRevLett.109.175502
    [31]
    LEI L, LIU J Y, ZHANG H Y. Polymeric nitrogen: a review of experimental synthesis method, structure properties and lattice dynamic characterization from large scientific facilities and extreme spectroscopy perspectives [J]. Energetic Materials Frontiers, 2023, 4(3): 158–168. doi: 10.1016/j.enmf.2023.09.005
    [32]
    MA Y M, OGANOV A R, LI Z W, et al. Novel high pressure structures of polymeric nitrogen [J]. Physical Review Letters, 2009, 102(6): 065501. doi: 10.1103/PhysRevLett.102.065501
    [33]
    ADELEKE A A, GRESCHNER M J, MAJUMDAR A, et al. Single-bonded allotrope of nitrogen predicted at high pressure [J]. Physical Review B, 2017, 96(22): 224104. doi: 10.1103/PhysRevB.96.224104
    [34]
    YOO C S, TOMASINO D, SMITH J, et al. High energy density nitrogen-rich extended solids [J]. AIP Conference Proceedings, 2017, 1793(1): 130007. doi: 10.1063/1.4971718
    [35]
    AKAHAMA Y, KAWAMURA H. High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range [J]. Journal of Applied Physics, 2004, 96(7): 3748–3751. doi: 10.1063/1.1778482
    [36]
    ZINN A S, SCHIFERL D, NICOL M F. Raman spectroscopy and melting of nitrogen between 290 and 900 K and 2.3 and 18 GPa [J]. The Journal of Chemical Physics, 1987, 87(2): 1267–1271. doi: 10.1063/1.453310
    [37]
    LIPP M J, KLEPEIS J P, BAER B J, et al. Transformation of molecular nitrogen to nonmolecular phases at megabar pressures by direct laser heating [J]. Physical Review B, 2007, 76(1): 014113. doi: 10.1103/PhysRevB.76.014113
    [38]
    CHENG P, YANG X, ZHANG X, et al. Polymorphism of polymeric nitrogen at high pressures [J]. The Journal of Chemical Physics, 2020, 152(24): 244502. doi: 10.1063/5.0007453
    [39]
    LIU Y, SU H P, NIU C P, et al. Synthesis of black phosphorus structured polymeric nitrogen [J]. Chinese Physics B, 2020, 29(10): 106201. doi: 10.1088/1674-1056/aba9bd
    [40]
    FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Physical Review B, 2000, 61(20): 14095–14107. doi: 10.1103/PhysRevB.61.14095
    [41]
    EREMETS M I, GAVRILIUK A G, TROJAN I A. Single-crystalline polymeric nitrogen [J]. Applied Physics Letters, 2007, 90(17): 171904. doi: 10.1063/1.2731679
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views(169) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return