Volume 38 Issue 6
Nov 2024
Turn off MathJax
Article Contents
ZHANG Ruike, GUO Rui’ang, XIAO Xiong, HE Duanwei. Measurement of the Melting Point of Hexagonal Boron Nitride under Pressures below 5 GPa[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 063401. doi: 10.11858/gywlxb.20240813
Citation: ZHANG Ruike, GUO Rui’ang, XIAO Xiong, HE Duanwei. Measurement of the Melting Point of Hexagonal Boron Nitride under Pressures below 5 GPa[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 063401. doi: 10.11858/gywlxb.20240813

Measurement of the Melting Point of Hexagonal Boron Nitride under Pressures below 5 GPa

doi: 10.11858/gywlxb.20240813
  • Received Date: 17 May 2024
  • Rev Recd Date: 31 May 2024
  • Available Online: 02 Sep 2024
  • Issue Publish Date: 05 Dec 2024
  • In this study, a flash-heating device was designed and assembled to achieve instantaneous discharge heating of samples under high pressure in the DS 6×14 MN domestic hinged six-anvil large chamber press. By combining large chamber static high pressure and instantaneous discharge heating technologies, the melting state of crystals has been determined by the nucleation and growth characteristics during solidification. The melting behavior of h-BN powder crystal under high pressure was studied by instantaneous discharge heating treatment. Using scanning electron microscopy (SEM), the microstructures of samples obtained by high-pressure instantaneous discharge heating treatment was analyzed in order to assess the melting state of h-BN crystals. It was determined that the melting points of h-BN under 3.4 and 4.3 GPa are (4251±150) K and (4531±200) K, respectively. These results are beneficial for exploring the applications of h-BN and revising the existed temperature-pressure phase diagram of boron nitride.

     

  • loading
  • [1]
    SONG Z Y, WANG W, CAI G X, et al. Investigation of optical spectrum properties of hexagonal boron nitride from metal to dielectric transition [J]. Plasmonics, 2018, 13(2): 563–566. doi: 10.1007/s11468-017-0544-y
    [2]
    ZHOU W Y, ZUO J, ZHANG X Q, et al. Thermal, electrical, and mechanical properties of hexagonal boron nitride: reinforced epoxy composites [J]. Journal of Composite Materials, 2014, 48(20): 2517–2526. doi: 10.1177/0021998313499953
    [3]
    PEREVISLOV S N. Structure, properties, and applications of graphite-like hexagonal boron nitride [J]. Refractories and Industrial Ceramics, 2019, 60(3): 291–295. doi: 10.1007/s11148-019-00355-5
    [4]
    KIM T Y, SONG E H, KANG B H, et al. Hydrolyzed hexagonal boron nitride/polymer nanocomposites for transparent gas barrier film [J]. Nanotechnology, 2017, 28(12): 12LT01. doi: 10.1088/1361-6528/aa5f2e
    [5]
    TURKOGLU M, SAHIN I, SAN T. Evaluation of hexagonal boron nitride as a new tablet lubricant [J]. Pharmaceutical Development and Technology, 2005, 10(3): 381–388. doi: 10.1081/PDT-65684
    [6]
    DECKER R, WANG Y, BRAR V W, et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy [J]. Nano Letters, 2011, 11(6): 2291–2295. doi: 10.1021/nl2005115
    [7]
    REVABHAI P M, SINGHAL R K, BASU H, et al. Progress on boron nitride nanostructure materials: properties, synthesis and applications in hydrogen storage and analytical chemistry [J]. Journal of Nanostructure in Chemistry, 2023, 13(1): 1–41. doi: 10.1007/s40097-022-00490-5
    [8]
    SHTANSKY D V, FIRESTEIN K L, GOLBERG D V. Fabrication and application of BN nanoparticles, nanosheets and their nanohybrids [J]. Nanoscale, 2018, 10(37): 17477–17493. doi: 10.1039/C8NR05027A
    [9]
    王艳芝, 张旺玺, 孙长红, 等. 氮化硼系列材料的合成制备及应用研究进展 [J]. 陶瓷学报, 2018, 39(6): 661–671. doi: 10.13957/j.cnki.tcxb.2018.06.002

    WANG Y Z, ZHANG W X, SUN C H, et al. The development of the applications and synthesis of boron nitride materials [J]. Journal of Ceramics, 2018, 39(6): 661–671. doi: 10.13957/j.cnki.tcxb.2018.06.002
    [10]
    WANG P, HE D W, WANG L P, et al. Diamond-cBN alloy: a universal cutting material [J]. Applied Physics Letters, 2015, 107(10): 101901. doi: 10.1063/1.4929728
    [11]
    WATANABE T, SATAKA R, YAMAMOTO K. Effect of bias application on c-BN synthesis by induction thermal plasmas under atmospheric pressure [J]. Thin Solid Films, 2008, 516(13): 4462–4467. doi: 10.1016/j.tsf.2007.10.018
    [12]
    WENTORF JR R H. Cubic form of boron nitride [J]. The Journal of Chemical Physics, 1957, 26(4): 956. doi: 10.1063/1.1745964
    [13]
    BUNDY F P, WENTORF JR R H. Direct transformation of hexagonal boron nitride to denser forms [J]. The Journal of Chemical Physics, 1963, 38(5): 1144–1149. doi: 10.1063/1.1733815
    [14]
    SOLOZHENKO V L, TURKEVICH V Z, HOLZAPFEL W B. Refined phase diagram of boron nitride [J]. The Journal of Physical Chemistry B, 1999, 103(15): 2903–2905. doi: 10.1021/jp984682c
    [15]
    LIANG A K, LIU Y J, SHI L T, et al. Melting temperature of diamond and cubic boron nitride at 15 gigapascals [J]. Physical Review Research, 2019, 1(3): 033090. doi: 10.1103/PhysRevResearch.1.033090
    [16]
    ZHANG J W, LIU F M, LI S Q, et al. Recrystallization behaviour of cubic boron nitride under high pressure [J]. Journal of the European Ceramic Society, 2021, 41(16): 132–138. doi: 10.1016/j.jeurceramsoc.2021.09.036
    [17]
    HRUBIAK R, MENG Y, SHEN G Y. Microstructures define melting of molybdenum at high pressures [J]. Nature Communications, 2017, 8(1): 14562. doi: 10.1038/ncomms14562
    [18]
    WU H Y, ZHUANG X L, NIE Y, et al. Effect of heat treatment on mechanical property and microstructure of a powder metallurgy nickel-based superalloy [J]. Materials Science and Engineering: A, 2019, 754: 29–37. doi: 10.1016/j.msea.2019.03.064
    [19]
    IKESUE A, AUNG Y L, YODA T, et al. Fabrication and laser performance of polycrystal and single crystal Nd: YAG by advanced ceramic processing [J]. Optical Materials, 2007, 29(10): 1289–1294. doi: 10.1016/j.optmat.2005.12.013
    [20]
    ZHOU X F, MA D J, WANG L F, et al. Large-volume cubic press produces high temperatures above 4 000 Kelvin for study of the refractory materials at pressures [J]. Review of Scientific Instruments, 2020, 91(1): 015118. doi: 10.1063/1.5128190
    [21]
    BOEHLER R, ROSS M, BOERCKER D B. High-pressure melting curves of alkali halides [J]. Physical Review B, 1996, 53(2): 556–563. doi: 10.1103/PhysRevB.53.556
    [22]
    SHEN G Y, LAZOR P. Measurement of melting temperatures of some minerals under lower mantle pressures [J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B9): 17699–17713. doi: 10.1029/95JB01864
    [23]
    BOEHLER R, ROSS M, BOERCKER D B. Melting of LiF and NaCl to 1 Mbar: systematics of ionic solids at extreme conditions [J]. Physical Review Letters, 1997, 78(24): 4589–4592. doi: 10.1103/PhysRevLett.78.4589
    [24]
    KIMURA T, OHFUJI H, NISHI M, et al. Melting temperatures of MgO under high pressure by micro-texture analysis [J]. Nature Communications, 2017, 8(1): 15735. doi: 10.1038/ncomms15735
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(190) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return