Citation: | ZHANG Xiaowei, ZHAO Heming, ZHENG Xiaobo, ZHANG Qiao, WANG Zhijun, XIAO Youcai. Numerical Simulation Study on Macro-Microscopic Damage of PBX Charge during Penetration of Double-Layer Targets[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064201. doi: 10.11858/gywlxb.20240795 |
[1] |
李媛媛, 高立龙, 李巍, 等. 抗过载炸药装药侵彻安全性试验研究 [J]. 含能材料, 2010, 18(6): 702–705. doi: 10.3969/j.issn.1006-9941.2010.06.021
LI Y Y, GAO L L, LI W, et al. Experiment research on security of insensitive explosive charge during penetration [J]. Chinese Journal of Energetic Materials, 2010, 18(6): 702–705. doi: 10.3969/j.issn.1006-9941.2010.06.021
|
[2] |
陈文, 张庆明, 胡晓东, 等. 侵彻过程冲击载荷对装药损伤实验研究 [J]. 含能材料, 2009, 17(3): 321–325. doi: 10.3969/j.issn.1006-9941.2009.03.017
CHEN W, ZHANG Q M, HU X D, et al. Experimental study on damage to explosive charge by impact load in the process of penetration [J]. Chinese Journal of Energetic Materials, 2009, 17(3): 321–325. doi: 10.3969/j.issn.1006-9941.2009.03.017
|
[3] |
LI X, LIU Y Z, SUN Y. Dynamic mechanical damage and non-shock initiation of a new polymer bonded explosive during penetration [J]. Polymers, 2020, 12(6): 1342. doi: 10.3390/polym12061342
|
[4] |
李晓. 侵彻过程中PBX装药的损伤与点火机制研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020.
LI X. Investigations on damage and initiation mechanism of PBX charge during penetration [D]. Harbin: Harbin Institute of Technology, 2020.
|
[5] |
赵生伟, 初哲, 李明. 抗侵彻过载战斗部装药安定性实验研究 [J]. 兵工学报, 2010, 31(Suppl 1): 284–287.
ZHAO S W, CHU Z, LI M. Experiment investigation on stability of explosive in anti-overload warhead [J]. Acta Armamentarii, 2010, 31(Suppl 1): 284–287.
|
[6] |
成丽蓉, 汪德武, 贺元吉. 侵彻单层和多层靶时战斗部装药损伤及热点生成机理研究 [J]. 兵工学报, 2020, 41(1): 32–39. doi: 10.3969/j.issn.1000-1093.2020.01.004
CHENG L R, WANG D W, HE Y J. Research on the damage and hot-spot generation in explosive charges during penetration into single- or multi-layer target [J]. Acta Armamentarii, 2020, 41(1): 32–39. doi: 10.3969/j.issn.1000-1093.2020.01.004
|
[7] |
毕超, 郭翔, 屈可朋, 等. 斜侵彻靶板过程中装药损伤的数值模拟 [J]. 火炸药学报, 2022, 45(3): 383–387. doi: 10.14077/j.issn.1007-7812.202201009
BI C, GUO X, QU K P, et al. Numerical simulation of charge damage during oblique penetration [J]. Chinese Journal of Explosives & Propellants, 2022, 45(3): 383–387. doi: 10.14077/j.issn.1007-7812.202201009
|
[8] |
崔云霄. 冲击载荷作用下PBX炸药的损伤破坏研究 [D]. 北京: 北京理工大学, 2017.
CUI Y X. Research on damage and destruction of PBX explosive under impact load [D]. Beijing: Beijing Institute of Technology, 2017.
|
[9] |
石啸海, 戴开达, 陈鹏万, 等. 战斗部侵彻过程中PBX装药动态损伤数值模拟 [J]. 中国测试, 2016, 42(10): 138–142. doi: 10.11857/j.issn.1674-5124.2016.10.026
SHI X H, DAI K D, CHEN P W, et al. Numerical simulation of dynamic damage of PBX charge during the warhead penetration process [J]. China Measurement & Test, 2016, 42(10): 138–142. doi: 10.11857/j.issn.1674-5124.2016.10.026
|
[10] |
石啸海, 余春祥, 戴开达, 等. 侵彻过程中弹头形状对PBX炸药损伤的影响 [J]. 弹箭与制导学报, 2019, 39(3): 81–85, 89. doi: 10.15892/j.cnki.djzdxb.2019.03.019
SHI X H, YU C X, DAI K D, et al. The influence of nose shape to dynamic damage of PBX charge during the penetration process [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(3): 81–85, 89. doi: 10.15892/j.cnki.djzdxb.2019.03.019
|
[11] |
张学伦, 汪衡, 谭正军, 等. 混凝土靶边界效应与弹丸长径比关联性的研究 [J]. 兵器装备工程学报, 2018, 39(4): 11–13, 18. doi: 10.11809/bqzbgcxb2018.04.003
ZHANG X L, WANG H, TAN Z J, et al. Relevance between aspect ratio of projectile and boundary effect of concrete target [J]. Journal of Ordnance Equipment Engineering, 2018, 39(4): 11–13, 18. doi: 10.11809/bqzbgcxb2018.04.003
|
[12] |
孙宝平, 段卓平, 万经伦, 等. 基于Visco-SCRAM模型的侵彻装药点火研究 [J]. 爆炸与冲击, 2015, 35(5): 689–695. doi: 10.11883/1001-1455(2015)05-0689-07
SUN B P, DUAN Z P, WAN J L, et al. Investigation on ignition of an explosive charge in a projectile during penetration based on Visco-SCRAM model [J]. Explosion and Shock Waves, 2015, 35(5): 689–695. doi: 10.11883/1001-1455(2015)05-0689-07
|
[13] |
李硕. 强冲击载荷下35CrMnSi动态力学行为与断裂机理研究 [D]. 太原: 中北大学, 2015.
LI S. Study on dynamic mechanical behavior and fracture mechanism of 35CrMnSi under impact loads [D]. Taiyuan: North University of China, 2015.
|
[14] |
赵丽俊, 郝永平, 黄晓杰, 等. 杆式射流侵彻45钢靶数值分析及试验研究 [J]. 兵器装备工程学报, 2023, 44(8): 147–153. doi: 10.11809/bqzbgcxb2023.08.021
ZHAO L J, HAO Y P, HUANG X J, et al. Numerical simulation and experimental research on jetting projectile charge penetrating 45 steel target [J]. Journal of Ordnance Equipment Engineering, 2023, 44(8): 147–153. doi: 10.11809/bqzbgcxb2023.08.021
|
[15] |
于鹏. 航空聚碳酸酯动态力学性能及本构关系研究 [D]. 广州: 华南理工大学, 2014.
YU P. Investigation on the dynamic characteristics and constitutive model of polycarbonate of aircraft [D]. Guangzhou: South China University of Technology, 2014.
|
[16] |
XIAO Y C, ZHANG Q, FAN C Y, et al. Numerical analysis of the damage and failure behavior of polymer-bonded explosives using discrete element method [J]. Computational Particle Mechanics, 2024, 11(2): 579–598. doi: 10.1007/s40571-023-00640-8
|
[17] |
XIAO Y C, ZHANG Q, GONG T Y, et al. Experimental analysis and multi-scale simulation of the fracture behavior of polymer-bonded explosives based on the dynamic notched semi-circular bend method [J]. International Journal of Solids and Structures, 2024, 291: 112690. doi: 10.1016/j.ijsolstr.2024.112690
|
[18] |
BI C, GUO X, WANG A H, et al. Strain-rate-dependent cohesive zone modelling of charge damage behavior when a projectile penetrates multilayered targets [J]. Acta Mechanica, 2023, 234(7): 2869–2887. doi: 10.1007/s00707-023-03541-2
|
[19] |
XIAO Y C, GONG T Y, ZHANG X W, et al. Multiscale modeling for dynamic compressive behavior of polymer bonded explosives [J]. International Journal of Mechanical Sciences, 2023, 242: 108007. doi: 10.1016/j.ijmecsci.2022.108007
|
[20] |
YANG Z, KANG G, LIU R, et al. Predicting the mechanical behaviour of highly particle-filled polymer composites using the nonlinear finite element method [J]. Composite Structures, 2022, 286: 115275. doi: 10.1016/j.compstruct.2022.115275
|
[21] |
BARUA A, KIM S, HORIE Y, et al. Prediction of probabilistic ignition behavior of polymer-bonded explosives from microstructural stochasticity [J]. Journal of Applied Physics, 2013, 113(18): 184907. doi: 10.1063/1.4804251
|
[22] |
HARDIN D B, ZHOU M. Effect of viscoplasticity on ignition sensitivity of an HMX based PBX [J]. AIP Conference Proceedings, 2017, 1793(1): 080005. doi: 10.1063/1.4971611
|
[23] |
CHEN X, DENG X M, SUTTON M A, et al. An inverse analysis of cohesive zone model parameter values for ductile crack growth simulations [J]. International Journal of Mechanical Sciences, 2014, 79: 206–215. doi: 10.1016/j.ijmecsci.2013.12.006
|
[24] |
AIROLDI A, DÁVILA C G. Identification of material parameters for modelling delamination in the presence of fibre bridging [J]. Composite Structures, 2012, 94(11): 3240–3249. doi: 10.1016/j.compstruct.2012.05.014
|
[25] |
VALOROSO N, SESSA S, LEPORE M, et al. Identification of mode-Ⅰ cohesive parameters for bonded interfaces based on DCB test [J]. Engineering Fracture Mechanics, 2013, 104: 56–79. doi: 10.1016/j.engfracmech.2013.02.008
|
[26] |
YAMAKOV V, SAETHER E, GLAESSGEN E H. Multiscale modeling of intergranular fracture in aluminum: constitutive relation for interface debonding [J]. Journal of Materials Science, 2008, 43(23/24): 7488–7494. doi: 10.1007/s10853-008-2823-7
|
[27] |
XU Y J, ZHAO S, JIN G H, et al. Ductile fracture of solder-Cu interface and inverse identification of its interfacial model parameters [J]. Mechanics of Materials, 2017, 114: 279–292. doi: 10.1016/j.mechmat.2017.08.013
|
[28] |
FENG T, XU J S, HAN L, et al. Modeling and simulation of the debonding process of composite solid propellants [J]. IOP Conference Series: Materials Science and Engineering, 2017, 220: 012020.
|
[29] |
CUI J Y, QIANG H F, WANG J X. Experimental and simulation research on microscopic damage of HTPB propellant under tension-shear loading [J]. AIP Advances, 2022, 12(8): 085214. doi: 10.1063/5.0101388
|
[30] |
CUI H R, SHEN Z B, LI H Y. A novel time dependent cohesive zone model for the debonding interface between solid propellant and insulation [J]. Meccanica, 2018, 53(14): 3527–3544. doi: 10.1007/s11012-018-0894-3
|
[31] |
胡静. Janus粒子对硅胶类热力学不相容体系相容性的影响及其应用研究 [D]. 北京: 北京化工大学, 2021.
HU J. The effect and application of Janus particles on the compatibility of inherent immiscible blends composed of silicone rubber [D]. Beijing: Beijing University of Chemical Technology, 2021.
|