Citation: | LONG Haidong, CHEN Jie, XIAO Xiong, PENG Fang. High-Temperature and High-Pressure Synthesis of High-Entropy Transition Metal Diborides[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 063101. doi: 10.11858/gywlxb.20240790 |
[1] |
OSES C, TOHER C, CURTAROLO S. High-entropy ceramics [J]. Nature Reviews Materials, 2020, 5(4): 295–309. doi: 10.1038/s41578-019-0170-8
|
[2] |
HE Q F, WANG J G, CHEN H A, et al. A highly distorted ultraelastic chemically complex Elinvar alloy [J]. Nature, 2022, 602(7896): 251–257. doi: 10.1038/s41586-021-04309-1
|
[3] |
ZHANG X L, LI W W, TIAN H, et al. Ultra-incompressible high-entropy diborides [J]. The Journal of Physical Chemistry Letters, 2021, 12(12): 3106–3113. doi: 10.1021/acs.jpclett.1c00399
|
[4] |
徐亮, 王红洁, 苏磊. 高熵陶瓷研究进展 [J]. 宇航材料工艺, 2021, 51(1): 1–9. doi: 10.12044/j.issn.1007-2330.2021.01.001
XU L, WANG H J, SU L. Progress in research on high-entropy ceramics [J]. Aerospace Materials & Technology, 2021, 51(1): 1–9. doi: 10.12044/j.issn.1007-2330.2021.01.001
|
[5] |
陈磊, 王恺, 苏文韬, 等. 过渡金属非氧化物高熵陶瓷的研究进展 [J]. 无机材料学报, 2020, 35(7): 748–758. doi: 10.15541/jim20190408
CHEN L, WANG K, SU W T, et al. Research progress of transition metal non-oxide high-entropy ceramics [J]. Journal of Inorganic Materials, 2020, 35(7): 748–758. doi: 10.15541/jim20190408
|
[6] |
张伟明, 向会敏, 戴付志, 等. 高熵陶瓷: 吸波材料设计新策略 [J]. 宇航材料工艺, 2022, 52(2): 13–25. doi: 10.12044/j.issn.1007-2330.2022.02.002
ZHANG W M, XIANG H M, DAI F Z, et al. High-entropy ceramics: a new strategy for electromagnetic wave absorbing materials [J]. Aerospace Materials & Technology, 2022, 52(2): 13–25. doi: 10.12044/j.issn.1007-2330.2022.02.002
|
[7] |
WEN Z H, TANG Z Y, LIU Y W, et al. Ultrastrong and high thermal insulating porous high-entropy ceramics up to
|
[8] |
GILD J, ZHANG Y Y, HARRINGTON T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics [J]. Scientific Reports, 2016, 6: 37946. doi: 10.1038/srep37946
|
[9] |
LIU D, LIU H H, NING S S, et al. Synthesis of high-purity high-entropy metal diboride powders by boro/carbothermal reduction [J]. Journal of the American Ceramic Society, 2019, 102(12): 7071–7076. doi: 10.1111/jace.16746
|
[10] |
MURCHIE A C, WATTS J L, FAHRENHOLTZ W G, et al. Room-temperature mechanical properties of a high-entropy diboride [J]. International Journal of Applied Ceramic Technology, 2022, 19(4): 2293–2299. doi: 10.1111/ijac.14026
|
[11] |
TALLARITA G, LICHERI R, GARRONI S, et al. Novel processing route for the fabrication of bulk high-entropy metal diborides [J]. Scripta Materialia, 2019, 158: 100–104. doi: 10.1016/j.scriptamat.2018.08.039
|
[12] |
ZHANG Y, SUN S K, ZHANG W, et al. Improved densification and hardness of high-entropy diboride ceramics from fine powders synthesized via borothermal reduction process [J]. Ceramics International, 2020, 46(9): 14299–14303. doi: 10.1016/j.ceramint.2020.02.214
|
[13] |
ZHANG Y, GUO W M, JIANG Z B, et al. Dense high-entropy boride ceramics with ultra-high hardness [J]. Scripta Materialia, 2019, 164: 135–139. doi: 10.1016/j.scriptamat.2019.01.021
|
[14] |
FENG L, FAHRENHOLTZ W G, HILMAS G E. Two-step synthesis process for high-entropy diboride powders [J]. Journal of the American Ceramic Society, 2020, 103(2): 724–730. doi: 10.1111/jace.16801
|
[15] |
GU J F, ZOU J, SUN S K, et al. Dense and pure high-entropy metal diboride ceramics sintered from self-synthesized powders via boro/carbothermal reduction approach [J]. Science China Materials, 2019, 62(12): 1898–1909. doi: 10.1007/s40843-019-9469-4
|
[16] |
LIU D, WEN T Q, YE B L, et al. Synthesis of superfine high-entropy metal diboride powders [J]. Scripta Materialia, 2019, 167: 110–114. doi: 10.1016/j.scriptamat.2019.03.038
|
[17] |
SHEN X Q, LIU J X, LI F, et al. Preparation and characterization of diboride-based high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-SiC particulate composites [J]. Ceramics International, 2019, 45(18): 24508–24514. doi: 10.1016/j.ceramint.2019.08.178
|
[18] |
MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts [J]. Acta Materialia, 2017, 122: 448–511. doi: 10.1016/j.actamat.2016.08.081
|