Citation: | YANG Xiangyang, WU Dun, ZHU Youlin, LI Junguo, ZHANG Ruizhi, ZHANG Jian, LUO Guoqiang. Molecular Dynamics Simulation Study on Spallation Failure of [100] Single Crystal Aluminum under Different Waveform Loadings[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030106. doi: 10.11858/gywlxb.20240786 |
[1] |
LI C, LI B, HUANG J Y, et al. Spall damage of a mild carbon steel: effects of peak stress, strain rate and pulse duration [J]. Materials Science and Engineering: A, 2016, 660: 139–147. doi: 10.1016/j.msea.2016.02.080
|
[2] |
LI C, YANG K, TANG X C, et al. Spall strength of a mild carbon steel: effects of tensile stress history and shock-induced microstructure [J]. Materials Science and Engineering: A, 2019, 754: 461–469. doi: 10.1016/j.msea.2019.03.019
|
[3] |
NGUYEN T, LUSCHER D J, WILKERSON J W. A physics-based model and simple scaling law to predict the pressure dependence of single crystal spall strength [J]. Journal of the Mechanics and Physics of Solids, 2020, 137: 103875. doi: 10.1016/j.jmps.2020.103875
|
[4] |
LI C, YANG K, GAO Y H, et al. Dislocation-dominated void nucleation in shock-spalled single crystal copper: mechanism and anisotropy [J]. International Journal of Plasticity, 2022, 155: 103331. doi: 10.1016/j.ijplas.2022.103331
|
[5] |
REMINGTON T P, HAHN E N, ZHAO S, et al. Spall strength dependence on grain size and strain rate in tantalum [J]. Acta Materialia, 2018, 158: 313–329. doi: 10.1016/j.actamat.2018.07.048
|
[6] |
PANG B, CASE S, JONES I P, et al. The defect evolution in shock loaded tantalum single crystals [J]. Acta Materialia, 2018, 148: 482–491. doi: 10.1016/j.actamat.2017.11.052
|
[7] |
HAHN E N, FENSIN S J, GERMANN T C, et al. Orientation dependent spall strength of tantalum single crystals [J]. Acta Materialia, 2018, 159: 241–248. doi: 10.1016/j.actamat.2018.07.073
|
[8] |
DONGARE A M, LAMATTINA B, RAJENDRAN A M. Atomic scale studies of spall behavior in single crystal Cu [J]. Procedia Engineering, 2011, 10: 3636–3641. doi: 10.1016/j.proeng.2011.04.598
|
[9] |
MACKENCHERY K, VALISETTY R R, NAMBURU R R, et al. Dislocation evolution and peak spall strengths in single crystal and nanocrystalline Cu [J]. Journal of Applied Physics, 2016, 119(4): 044301. doi: 10.1063/1.4939867
|
[10] |
MA K, CHEN J, DONGARE A M. Role of pre-existing dislocations on the shock compression and spall behavior in single-crystal copper at atomic scales [J]. Journal of Applied Physics, 2021, 129(17): 175901. doi: 10.1063/5.0040802
|
[11] |
WANG J, WANG F, ZENG X G, et al. Unraveling the plasticity performance and melting in single crystal tantalum damaged by shock compression [J]. Engineering Fracture Mechanics, 2022, 276: 108921. doi: 10.1016/J.ENGFRACMECH.2022.108921
|
[12] |
KRASNIKOV V S, MAYER A E. Plasticity driven growth of nanovoids and strength of aluminum at high rate tension: molecular dynamics simulations and continuum modeling [J]. International Journal of Plasticity, 2015, 74: 75–91. doi: 10.1016/j.ijplas.2015.06.007
|
[13] |
ZHOU T T, HE A M, WANG P, et al. Spall damage in single crystal Al with helium bubbles under decaying shock loading via molecular dynamics study [J]. Computational Materials Science, 2019, 162: 255–267. doi: 10.1016/j.commatsci.2019.02.019
|
[14] |
TANG F, JIAN Z Y, XIAO S F, et al. Molecular dynamics simulation of cylindrically converging shock response in single crystal Cu [J]. Computational Materials Science, 2020, 183: 109845. doi: 10.1016/j.commatsci.2020.109845
|
[15] |
XIONG Q L, KITAMURA T, LI Z H. Cylindrical voids induced deformation response of single crystal coppers during low-speed shock compressions: a molecular dynamics study [J]. Mechanics of Materials, 2019, 138: 103167. doi: 10.1016/j.mechmat.2019.103167
|
[16] |
TIAN X, CUI J Z, MA K P, et al. Shock-induced plasticity and damage in single-crystalline Cu at elevated temperatures by molecular dynamics simulations [J]. International Journal of Heat and Mass Transfer, 2020, 158: 120013. doi: 10.1016/j.ijheatmasstransfer.2020.120013
|
[17] |
LIAO Y, XIANG M Z, ZENG X G, et al. Molecular dynamics studies of the roles of microstructure and thermal effects in spallation of aluminum [J]. Mechanics of Materials, 2015, 84: 12–27. doi: 10.1016/j.mechmat.2015.01.007
|
[18] |
HAWKINS M C, THOMAS S A, FENSIN S J, et al. Spall and subsequent recompaction of copper under shock loading [J]. Journal of Applied Physics, 2020, 128(4): 045901. doi: 10.1063/5.0011645
|
[19] |
ZHU Y L, HU J N, WEI Q Q, et al. Enhanced spall strength of single crystal aluminum by temperature rise mitigation and structural phase transition under shock pulse [J]. Mechanics of Materials, 2023, 186: 104809. doi: 10.1016/j.mechmat.2023.104809
|
[20] |
黄海军, 沈强, 罗国强, 等. 利用多层阻抗梯度飞片产生准等熵压缩的理论解析 [J]. 物理学报, 2007, 56(3): 1538–1542. doi: 10.3321/j.issn:1000-3290.2007.03.050
HUANG H J, SHEN Q, LUO G Q, et al. Theoritical analysis of quasi-isentropic compression via flier-plate with grade wave impadence [J]. Acta Physica Sinica, 2007, 56(3): 1538–1542. doi: 10.3321/j.issn:1000-3290.2007.03.050
|
[21] |
ZHU Y L, HU J N, HUANG S L, et al. Molecular dynamics simulation on spallation of [111] Cu/Ni nano-multilayers: voids evolution under different shock pulse duration [J]. Computational Materials Science, 2022, 202: 110923. doi: 10.1016/J.COMMATSCI.2021.110923
|
[22] |
ZHAKHOVSKII V V, INOGAMOV N A, PETROV Y V, et al. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials [J]. Applied Surface Science, 2009, 255(24): 9592–9596. doi: 10.1016/j.apsusc.2009.04.082
|
[23] |
JIANG D D, SHAO J L, WU B, et al. Sudden change of spall strength induced by shock defects based on atomistic simulation of single crystal aluminum [J]. Scripta Materialia, 2022, 210: 114474. doi: 10.1016/j.scriptamat.2021.114474
|
[24] |
KADAU K, GERMANN T C, LOMDAHL P S, et al. Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals [J]. Physical Review B, 2005, 72(6): 064120. doi: 10.1103/PhysRevB.72.064120
|
[25] |
SRINIVASAN S G, BASKES M I, WAGNER G J. Atomistic simulations of shock induced microstructural evolution and spallation in single crystal nickel [J]. Journal of Applied Physics, 2007, 101(4): 043504. doi: 10.1063/1.2423084
|
[26] |
ASHITKOV S I, AGRANAT M B, KANEL’ G I, et al. Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses [J]. JETP Letters, 2010, 92(8): 516–520. doi: 10.1134/S0021364010200051
|
[27] |
ELIEZER S, MOSHE E, ELIEZER D, et al. Laser-induced tension to measure the ultimate strength of metals related to the equation of state [J]. Laser and Particle Beams, 2002, 20(1): 87–92. doi: 10.1017/S0263034602201123
|
[28] |
GARKUSHIN G V, KANEL G I, RAZORENOV S V, et al. Resistance to deformation and fracture of aluminum AD1 under shock-wave loading at temperatures of 20 and 600 ℃ [J]. Physics of The Solid State, 2010, 52(11): 2369–2375. doi: 10.1134/S1063783410110247
|
[29] |
KANEL G I, RAZORENOV S V, GRADY D E, et al. Spall fracture properties of aluminum and magnesium at high temperatures [J]. Journal of Applied Physics, 1996, 79(11): 8310–8317. doi: 10.1063/1.362542
|
[30] |
RAZORENOV S V, KANEL G I, FORTOV V E, et al. Submicrosecond strength of aluminum and alloy AMg6M at normal and elevated temperatures [J]. Fizika Metallov Ⅰ Metallovedenie, 2003, 95(1): 91–96.
|
[31] |
KANEL G I, RAZORENOV S V, SINGER J, et al. Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point [J]. Journal of Applied Physics, 2001, 90(1): 136–143. doi: 10.1063/1.1374478
|
[32] |
STRACHAN A, ÇAĞIN T, GODDARD Ⅲ W A. Critical behavior in spallation failure of metals [J]. Physical Review B, 2001, 63(6): 060103. doi: 10.1103/PhysRevB.63.060103
|
[1] | LI Jinlin, JIANG Jianwei, MEN Jianbing, WANG Shuyou, LI Mei. Numerical Simulation of the Structure of Composite Liner to Enhance After-Effect[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 015102. doi: 10.11858/gywlxb.20210785 |
[2] | WANG Yansheng, LI Weibing, HUANG Xuanning, WANG Xiaoming. Orthogonal Design of the Liner Structure in Dual-Mode Charge Warhead[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 045102. doi: 10.11858/gywlxb.20200537 |
[3] | HU Liangliang, HUANG Ruiyuan, LI Shichao, QIN Jian, WANG Jinxiang, RONG Guang. Shock Wave Simulation of Underwater Explosion[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015102. doi: 10.11858/gywlxb.20190773 |
[4] | LIU Zhiyue, ZHAI Junzhao. Numerical Simulation on the Performance of Shaped Charge with Explosively Welded Aluminum Copper Liner[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064107. doi: 10.11858/gywlxb.20190728 |
[5] | DENG Yunfei, YUAN Jiajun. Numerical Research of Influence of Attack Angle on Thin Aluminum Alloy Plate Impacted by Ogival-Nosed Projectile[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 045102. doi: 10.11858/gywlxb.20170601 |
[6] | LIU Hongjie, WANG Weili, MIAO Run, WU Shiyong. Optimum Design of Annular Double Done Shaped Charge Structure[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 065105. doi: 10.11858/gywlxb.20180539 |
[7] | ZHAO Beilei, ZHAO Jiguang, CUI Cunyan, LIU Ningyuan, WANG Yan, XIN Tengda, WANG Yaqi. Simulation Analysis of Influence of Spoiler Structural Parameters on Shock Wave Attenuation Characteristics[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 025202. doi: 10.11858/gywlxb.20170585 |
[8] | GAO Yonghong, ZHANG Ming, LIU Yingbing, ZHOU Jie, SHI Junlei, SUN Miao, SUN Jiangjun, WAN Qinghua. Numerical Simulation of the Interference of Double-layer Wedge-Charge ERA on Shaped Jet[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 065108. doi: 10.11858/gywlxb.20170525 |
[9] | GUO Zitao, GUO Zhao, ZHANG Wei. Numerical Study of the Oblique Perforation of Single Thin Metallic Plates[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 045101. doi: 10.11858/gywlxb.20180503 |
[10] | PANG Bao-Jun, LIN Min, ZHANG Kai, FU Xiang. Numerical Simulation of Debris Cloud Characteristics of the Mesh Shields[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 391-397. doi: 10.11858/gywlxb.2013.03.012 |
[11] | GAO Yong-Hong, GU Xiao-Hui, WANG Feng-Ying. Powder Liner Density Effect on the Performance of Shaped Charge Jet[J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 556-560. doi: 10.11858/gywlxb.2013.04.014 |
[12] | ZHENG Wei, PANG Bao-Jun, PENG Ke-Ke, LIN Min, FU Xiang. Hypervelocity Impact Experiment and Simulation for Ejecta[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 621-626. doi: 10.11858/gywlxb.2012.06.004 |
[13] | KANG Yan-Long, JIANG Jian-Wei, WANG Shu-You, MEN Jian-Bing. Experimental and Numerical Simulation Study of Penetration into Multi-Layer Target by Shaped Charge with Different Liner Materials[J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 487-493. doi: 10.11858/gywlxb.2012.05.002 |
[14] | XU Yu-Xin, WANG Shu-Shan, HAN Bao-Cheng, LIU Yong. Numerical Simulation on Initial Stage of Liquid Dispersed under Explosion Drive[J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 73-78 . doi: 10.11858/gywlxb.2011.01.012 |
[15] | CHI Run-Qiang, GUAN Gong-Shun, PANG Bao-Jun, ZHANG Wei, TANG Qi. Models for Momentum of Debris Cloud and Ejecta Produced by Hypervelocity Impacts of Aluminum Spheres with Thin Aluminum Sheets[J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 59-64 . doi: 10.11858/gywlxb.2009.01.010 |
[16] | LI Ru-Jiang, SHEN Zhao-Wu, WANG Feng-Ying. Initial Porosity Effect on the Shaped Charge Jet Behavior[J]. Chinese Journal of High Pressure Physics, 2008, 22(4): 445-448 . doi: 10.11858/gywlxb.2008.04.019 |
[17] | TAN Duo-Wang, SUN Cheng-Wei. Analytical Model for Jet Formation in Shaped Charge with Wide Cone Angle[J]. Chinese Journal of High Pressure Physics, 2006, 20(3): 270-276 . doi: 10.11858/gywlxb.2006.03.008 |
[18] | PANG Yong, YU Chuan, GUI Yu-Lin. Numerical Simulation of EFP Formation with Hemispherical Liner[J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 86-92 . doi: 10.11858/gywlxb.2005.01.015 |
[19] | WANG Tie-Fu, WANG Lei, RUAN Wen-Jun, ZHAO Tong-Hu. The Effect of the Grain Size of a Liner on the Performance of Shaped Charge Jets[J]. Chinese Journal of High Pressure Physics, 1996, 10(4): 291-298 . doi: 10.11858/gywlxb.1996.04.009 |
[20] | WANG Tie-Fu, ZHAO Tong-Hu, RUAN Wen-Jun, WANG Lei. The Influence of Impurities in Liner Materials on the Behavior of Shaped Charge Jets[J]. Chinese Journal of High Pressure Physics, 1996, 10(2): 102-106 . doi: 10.11858/gywlxb.1996.02.004 |