Citation: | HUANG Lili, PENG Li, CHEN Shi, ZHANG Hongping, LI Mu. Generalized Stacking Fault Energies of Diamond and Silicon under ⟨111⟩ Uniaxial Loading[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030107. doi: 10.11858/gywlxb.20240765 |
[1] |
JOHNSTON W G, GILMAN J J. Dislocation multiplication in lithium fluoride crystals [J]. Journal of Applied Physics, 1960, 31(4): 632–643. doi: 10.1063/1.1735655
|
[2] |
HIRTH J P, KUBIN L. Preface [J]. Dislocations in Solids, 2009.
|
[3] |
MADEC R, DEVINCRE B, KUBIN L, et al. The role of collinear interaction in dislocation-induced hardening [J]. Science, 2003, 301(5641): 1879–1882. doi: 10.1126/science.1085477
|
[4] |
SHEHADEH M A, BRINGA E M, ZBIB H M, et al. Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations [J]. Applied Physics Letters, 2006, 89(17): 171918. doi: 10.1063/1.2364853
|
[5] |
GERMANN T C, HOLIAN B L, LOMDAHL P S, et al. Dislocation structure behind a shock front in fcc perfect crystals: atomistic simulation results [J]. Metallurgical and Materials Transactions A, 2004, 35(9): 2609–2615. doi: 10.1007/s11661-004-0206-5
|
[6] |
KANEL G I, FORTOV V E, RAZORENOV S V. Shock-wave phenomena and the properties of condensed matter [M]. New York: Springer, 2004.
|
[7] |
MACDONALD M J, MCBRIDE E E, GALTIER E, et al. Using simultaneous X-ray diffraction and velocity interferometry to determine material strength in shock-compressed diamond [J]. Applied Physics Letters, 2020, 116(23): 234104. doi: 10.1063/5.0013085
|
[8] |
ZEPEDA-RUIZ L A, STUKOWSKI A, OPPELSTRUP T, et al. Probing the limits of metal plasticity with molecular dynamics simulations [J]. Nature, 2017, 550(7677): 492–495. doi: 10.1038/nature23472
|
[9] |
FAN H D, WANG Q Y, EL-AWADY J A, et al. Strain rate dependency of dislocation plasticity [J]. Nature Communications, 2021, 12(1): 1845. doi: 10.1038/s41467-021-21939-1
|
[10] |
GUMBSCH P, GAO H J. Dislocations faster than the speed of sound [J]. Science, 1999, 283(5404): 965–968. doi: 10.1126/science.283.5404.965
|
[11] |
TEUTONICO L J. Dynamical behavior of dislocations in anisotropic media [J]. Physical Review, 1961, 124(4): 1039–1045. doi: 10.1103/PhysRev.124.1039
|
[12] |
TEUTONICO L J. Uniformly moving dislocations of arbitrary orientation in anisotropic media [J]. Physical Review, 1962, 127(2): 413–418. doi: 10.1103/PhysRev.127.413
|
[13] |
BLASCHKE D N, CHEN J, FENSIN S, et al. Clarifying the definition of ‘transonic’ screw dislocations [J]. Philosophical Magazine, 2021, 101(8): 997–1018. doi: 10.1080/14786435.2021.1876269
|
[14] |
KATAGIRI K, PIKUZ T, FANG L C, et al. Transonic dislocation propagation in diamond [J]. Science, 2023, 382(6666): 69–72. doi: 10.1126/science.adh5563
|
[15] |
WESSEL K, ALEXANDER H. On the mobility of partial dislocations in silicon [J]. Philosophical Magazine, 1977, 35(6): 1523–1536. doi: 10.1080/14786437708232975
|
[16] |
RABIER J, DEMENET J L. Low temperature, high stress plastic deformation of semiconductors: the silicon case [J]. Physica Status Solidi B, 2000, 222(1): 63–74. doi: 10.1002/1521-3951(200011)222:1<63::AID-PSSB63>3.0.CO;2-E
|
[17] |
CAI W, BULATOV V V, CHANG J P, et al. Dislocation core effects on mobility [M]//NABARRO F R N, HIRTH J P. Dislocations in Solids, Amsterdam: Elsevier, 2004: 1–80.
|
[18] |
VITEK V. Intrinsic stacking faults in body-centred cubic crystals [J]. Philosophical Magazine, 1968, 18(154): 773–786. doi: 10.1080/14786436808227500
|
[19] |
VITEK V. Theory of the core structures of dislocations in body-centered-cubic metals [J]. Cryst Lattice Defects, 1974, 5: 1–34.
|
[20] |
THOMSON R. Intrinsic ductility criterion for interfaces in solids [J]. Physical Review B, 1995, 52(10): 7124–7134. doi: 10.1103/PhysRevB.52.7124
|
[21] |
SUN Y M, KAXIRAS E. Slip energy barriers in aluminium and implications for ductile-brittle behaviour [J]. Philosophical Magazine A, 1997, 75(4): 1117–1127. doi: 10.1080/01418619708214014
|
[22] |
ANDRIC P, YIN B L, CURTIN W A. Stress-dependence of generalized stacking fault energies [J]. Journal of the Mechanics and Physics of Solids, 2019, 122: 262–279. doi: 10.1016/j.jmps.2018.09.007
|
[23] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
|
[24] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)] [J]. Physical Review Letters, 1997, 78(7): 1396. doi: 10.1103/PhysRevLett.78.1396
|
[25] |
BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
|
[26] |
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
|
[27] |
KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals [J]. Physical Review B, 1993, 47(1): 558–561. doi: 10.1103/PhysRevB.47.558
|
[28] |
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
|
[29] |
HU X S, HUANG M S, LI Z H, et al. Study on lattice discreteness effect on superdislocation core properties of Ni3Al by improved semi-discrete variational peierls-Nabarro model [J]. Intermetallics, 2022, 151: 107695. doi: 10.1016/j.intermet.2022.107695
|
[30] |
ANDERSON P M, HIRTH J P, LOTHE J. Theory of dislocations [M]. 3rd ed. Cambridge: Cambridge University Press, 2017.
|
[31] |
VAN SWYGENHOVEN H, DERLET P M, FRØSETH A G. Stacking fault energies and slip in nanocrystalline metals [J]. Nature Materials, 2004, 3(6): 399–403. doi: 10.1038/nmat1136
|