Volume 38 Issue 3
Jun 2024
Turn off MathJax
Article Contents
HUANG Lili, PENG Li, CHEN Shi, ZHANG Hongping, LI Mu. Generalized Stacking Fault Energies of Diamond and Silicon under ⟨111⟩ Uniaxial Loading[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030107. doi: 10.11858/gywlxb.20240765
Citation: HUANG Lili, PENG Li, CHEN Shi, ZHANG Hongping, LI Mu. Generalized Stacking Fault Energies of Diamond and Silicon under ⟨111⟩ Uniaxial Loading[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030107. doi: 10.11858/gywlxb.20240765

Generalized Stacking Fault Energies of Diamond and Silicon under ⟨111⟩ Uniaxial Loading

doi: 10.11858/gywlxb.20240765
  • Received Date: 28 Mar 2024
  • Rev Recd Date: 16 Apr 2024
  • Available Online: 28 May 2024
  • Issue Publish Date: 03 Jun 2024
  • The energy caused by atomic level shear in a crystal is called generalized fault energy (GSFE), This is an important material property for describing nanoscale plastic phenomena in crystalline materials, such as dislocation decomposition, nucleation, and twinning. During the shock loading process, the elastoplastic transition occurs after one-dimensional elastic strain, so the generalized stacking fault energy is of great significance in understanding the occurrence of plastic flow. Here, we calculate the generalized GSFE surface of glide (111) surface of silicon and diamond under uniaxial strain in [111] direction by using the first principles of density functional theory. Based on the translation symmetry of GSFE surface, we fit the GSFE surface expression obtained by Fourier series expansion and the generalized stacking fault energy curves for the $ [{\overline{1}10}] $ (111) and $ [ 11\overline{2}]$ (111) directions are given. With the increase of strain, the intrinsic fault energy (γI) and the unstable fault energy (γus) have obvious changes, and the ratio of the unstable stacking fault energy to the intrinsic stacking fault energy (γus/γI) decreases indicating that dislocations in crystals are not easily decomposed under uniaxial strain in the $ \left\langle{111}\right\rangle $ direction. This result explains the results of dynamic experiments of dislocation evolution at four generations of light sources that the speed and strength of fault signals loaded along $ \left\langle{111}\right\rangle $ direction are much lower than those loaded along $ \left\langle{110}\right\rangle $ direction and $ \left\langle{100}\right\rangle $ direction.

     

  • loading
  • [1]
    JOHNSTON W G, GILMAN J J. Dislocation multiplication in lithium fluoride crystals [J]. Journal of Applied Physics, 1960, 31(4): 632–643. doi: 10.1063/1.1735655
    [2]
    HIRTH J P, KUBIN L. Preface [J]. Dislocations in Solids, 2009.
    [3]
    MADEC R, DEVINCRE B, KUBIN L, et al. The role of collinear interaction in dislocation-induced hardening [J]. Science, 2003, 301(5641): 1879–1882. doi: 10.1126/science.1085477
    [4]
    SHEHADEH M A, BRINGA E M, ZBIB H M, et al. Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations [J]. Applied Physics Letters, 2006, 89(17): 171918. doi: 10.1063/1.2364853
    [5]
    GERMANN T C, HOLIAN B L, LOMDAHL P S, et al. Dislocation structure behind a shock front in fcc perfect crystals: atomistic simulation results [J]. Metallurgical and Materials Transactions A, 2004, 35(9): 2609–2615. doi: 10.1007/s11661-004-0206-5
    [6]
    KANEL G I, FORTOV V E, RAZORENOV S V. Shock-wave phenomena and the properties of condensed matter [M]. New York: Springer, 2004.
    [7]
    MACDONALD M J, MCBRIDE E E, GALTIER E, et al. Using simultaneous X-ray diffraction and velocity interferometry to determine material strength in shock-compressed diamond [J]. Applied Physics Letters, 2020, 116(23): 234104. doi: 10.1063/5.0013085
    [8]
    ZEPEDA-RUIZ L A, STUKOWSKI A, OPPELSTRUP T, et al. Probing the limits of metal plasticity with molecular dynamics simulations [J]. Nature, 2017, 550(7677): 492–495. doi: 10.1038/nature23472
    [9]
    FAN H D, WANG Q Y, EL-AWADY J A, et al. Strain rate dependency of dislocation plasticity [J]. Nature Communications, 2021, 12(1): 1845. doi: 10.1038/s41467-021-21939-1
    [10]
    GUMBSCH P, GAO H J. Dislocations faster than the speed of sound [J]. Science, 1999, 283(5404): 965–968. doi: 10.1126/science.283.5404.965
    [11]
    TEUTONICO L J. Dynamical behavior of dislocations in anisotropic media [J]. Physical Review, 1961, 124(4): 1039–1045. doi: 10.1103/PhysRev.124.1039
    [12]
    TEUTONICO L J. Uniformly moving dislocations of arbitrary orientation in anisotropic media [J]. Physical Review, 1962, 127(2): 413–418. doi: 10.1103/PhysRev.127.413
    [13]
    BLASCHKE D N, CHEN J, FENSIN S, et al. Clarifying the definition of ‘transonic’ screw dislocations [J]. Philosophical Magazine, 2021, 101(8): 997–1018. doi: 10.1080/14786435.2021.1876269
    [14]
    KATAGIRI K, PIKUZ T, FANG L C, et al. Transonic dislocation propagation in diamond [J]. Science, 2023, 382(6666): 69–72. doi: 10.1126/science.adh5563
    [15]
    WESSEL K, ALEXANDER H. On the mobility of partial dislocations in silicon [J]. Philosophical Magazine, 1977, 35(6): 1523–1536. doi: 10.1080/14786437708232975
    [16]
    RABIER J, DEMENET J L. Low temperature, high stress plastic deformation of semiconductors: the silicon case [J]. Physica Status Solidi B, 2000, 222(1): 63–74. doi: 10.1002/1521-3951(200011)222:1<63::AID-PSSB63>3.0.CO;2-E
    [17]
    CAI W, BULATOV V V, CHANG J P, et al. Dislocation core effects on mobility [M]//NABARRO F R N, HIRTH J P. Dislocations in Solids, Amsterdam: Elsevier, 2004: 1–80.
    [18]
    VITEK V. Intrinsic stacking faults in body-centred cubic crystals [J]. Philosophical Magazine, 1968, 18(154): 773–786. doi: 10.1080/14786436808227500
    [19]
    VITEK V. Theory of the core structures of dislocations in body-centered-cubic metals [J]. Cryst Lattice Defects, 1974, 5: 1–34.
    [20]
    THOMSON R. Intrinsic ductility criterion for interfaces in solids [J]. Physical Review B, 1995, 52(10): 7124–7134. doi: 10.1103/PhysRevB.52.7124
    [21]
    SUN Y M, KAXIRAS E. Slip energy barriers in aluminium and implications for ductile-brittle behaviour [J]. Philosophical Magazine A, 1997, 75(4): 1117–1127. doi: 10.1080/01418619708214014
    [22]
    ANDRIC P, YIN B L, CURTIN W A. Stress-dependence of generalized stacking fault energies [J]. Journal of the Mechanics and Physics of Solids, 2019, 122: 262–279. doi: 10.1016/j.jmps.2018.09.007
    [23]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [24]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)] [J]. Physical Review Letters, 1997, 78(7): 1396. doi: 10.1103/PhysRevLett.78.1396
    [25]
    BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
    [26]
    KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
    [27]
    KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals [J]. Physical Review B, 1993, 47(1): 558–561. doi: 10.1103/PhysRevB.47.558
    [28]
    KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [29]
    HU X S, HUANG M S, LI Z H, et al. Study on lattice discreteness effect on superdislocation core properties of Ni3Al by improved semi-discrete variational peierls-Nabarro model [J]. Intermetallics, 2022, 151: 107695. doi: 10.1016/j.intermet.2022.107695
    [30]
    ANDERSON P M, HIRTH J P, LOTHE J. Theory of dislocations [M]. 3rd ed. Cambridge: Cambridge University Press, 2017.
    [31]
    VAN SWYGENHOVEN H, DERLET P M, FRØSETH A G. Stacking fault energies and slip in nanocrystalline metals [J]. Nature Materials, 2004, 3(6): 399–403. doi: 10.1038/nmat1136
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(177) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return