Volume 38 Issue 5
Sep 2024
Turn off MathJax
Article Contents
HONG Yifei, LI Xuhai, WU Fengchao, ZHANG Zhaoguo, ZHANG Jian, CHEN Sen, WANG Yuan, YU Yuying, HU Jianbo. Spall Damage of Cr-Ni-Mo Steel under Shock-Release-Reloading Conditions[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054101. doi: 10.11858/gywlxb.20240757
Citation: HONG Yifei, LI Xuhai, WU Fengchao, ZHANG Zhaoguo, ZHANG Jian, CHEN Sen, WANG Yuan, YU Yuying, HU Jianbo. Spall Damage of Cr-Ni-Mo Steel under Shock-Release-Reloading Conditions[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054101. doi: 10.11858/gywlxb.20240757

Spall Damage of Cr-Ni-Mo Steel under Shock-Release-Reloading Conditions

doi: 10.11858/gywlxb.20240757
  • Received Date: 20 Mar 2024
  • Rev Recd Date: 07 May 2024
  • Available Online: 15 Jul 2024
  • Issue Publish Date: 29 Sep 2024
  • In this work, plate-impact experiments, postmortem characterizations and one-dimensional hydrodynamic simulations were conducted to investigate the spall behavior of Cr-Ni-Mo steel under complex shock loading paths. Multi-layer flyers were utilized to generate the complex shock-release-reloading paths. Re-closed spall plane and mitigated damage zones were observed after recompression. Voids nucleate at the austenite grain boundaries and packet boundaries, which is consistent with the observations in single-shock experiments. The damage behavior is characterized by a mixed mode with both transgranular and intergranular characteristics. Moreover, notable impedance mismatch between different flyer layers can lead to the absence of reloading signal in the free surface velocity profiles. These findings can provide us insights into the spall behavior of Cr-Ni-Mo steel under complex loading conditions.

     

  • loading
  • [1]
    DU Y F, LU H H, SHEN X Q. Coupled effects of banded structure and carbide precipitation on mechanical performance of Cr-Ni-Mo-V steel [J]. Materials Science and Engineering: A, 2022, 832: 142478. doi: 10.1016/j.msea.2021.142478
    [2]
    HAI C, ZHU Y T, FAN E D, et al. Effects of the microstructure and reversed austenite on the hydrogen embrittlement susceptibility of Ni-Cr-Mo-V/Nb high-strength steel [J]. Corrosion Science, 2023, 218: 111164. doi: 10.1016/j.corsci.2023.111164
    [3]
    ZHAO X Y, LI H J. Experimental study on the dynamic behavior of a Cr-Ni-Mo-V steel under different shock stresses [J]. Metals, 2023, 13(4): 663. doi: 10.3390/met13040663
    [4]
    MAROPOULOS S, RIDLEY N, KARAGIANNIS S. Structural variations in heat treated low alloy steel forgings [J]. Materials Science and Engineering: A, 2004, 380(1/2): 79–92. doi: 10.1016/j.msea.2004.03.053
    [5]
    JONES D R, FENSIN S J, NDEFRU B G, et al. Spall fracture in additive manufactured tantalum [J]. Journal of Applied Physics, 2018, 124(22): 225902. doi: 10.1063/1.5063930
    [6]
    ZHANG N B, XU J, FENG Z D, et al. Shock compression and spallation damage of high-entropy alloy Al0.1CoCrFeNi [J]. Journal of Materials Science & Technology, 2022, 128: 1–9. doi: 10.1016/j.jmst.2022.02.056
    [7]
    蔡洋, 李超, 卢磊. 冲击载荷下金属材料的微结构-加载特性-层裂响应关系概述 [J]. 高压物理学报, 2021, 35(4): 040104. doi: 10.11858/gywlxb.20200648

    CAI Y, LI C, LU L. Effects of microstructure and loading characteristics on spallation of metallic materials under shock loading [J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040104. doi: 10.11858/gywlxb.20200648
    [8]
    LI C, LI B, HUANG J Y, et al. Spall damage of a mild carbon steel: effects of peak stress, strain rate and pulse duration [J]. Materials Science and Engineering: A, 2016, 660: 139–147. doi: 10.1016/j.msea.2016.02.080
    [9]
    LI C, YANG K, TANG X C, et al. Spall strength of a mild carbon steel: effects of tensile stress history and shock-induced microstructure [J]. Materials Science and Engineering: A, 2019, 754: 461–469. doi: 10.1016/j.msea.2019.03.019
    [10]
    LI C, HUANG J Y, TANG X C, et al. Effects of structural anisotropy on deformation and damage of a duplex stainless steel under high strain rate loading [J]. Materials Science and Engineering: A, 2017, 705: 265–272. doi: 10.1016/j.msea.2017.08.091
    [11]
    EUSER V K, JONES D R, MARTINEZ D T, et al. The effect of microstructure on the dynamic shock response of 1045 steel [J]. Acta Materialia, 2023, 250: 118874. doi: 10.1016/j.actamat.2023.118874
    [12]
    BECKER R, LEBLANC M M, CAZAMIAS J U. Characterization of recompressed spall in copper gas gun targets [J]. Journal of Applied Physics, 2007, 102(9): 093512. doi: 10.1063/1.2802589
    [13]
    JONES D R, FENSIN S J, MORROW B M, et al. Shock recompaction of spall damage [J]. Journal of Applied Physics, 2020, 127(24): 245901. doi: 10.1063/5.0011337
    [14]
    HAWKINS M C, THOMAS S A, FENSIN S J, et al. Spall and subsequent recompaction of copper under shock loading [J]. Journal of Applied Physics, 2020, 128(4): 045902. doi: 10.1063/5.0011645
    [15]
    GRAY G T, BOURNE N K, LIVESCU V, et al. The influence of shock-loading path on the spallation response of Ta [J]. Journal of Physics: Conference Series, 2014, 500(11): 112031. doi: 10.1088/1742-6596/500/11/112031
    [16]
    YU L, XIAO X Z, CHEN L R, et al. A hierarchical theoretical model for mechanical properties of lath martensitic steels [J]. International Journal of Plasticity, 2018, 111: 135–151. doi: 10.1016/j.ijplas.2018.07.012
    [17]
    李英华, 常敬臻, 张林, 等. 氦泡铝的层裂特性实验研究 [J]. 高压物理学报, 2021, 35(5): 054101. doi: 10.11858/gywlxb.20210770

    LI Y H, CHANG J Z, ZHANG L, et al. Experimental investigation of spall damage in pure aluminum with helium bubbles [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054101. doi: 10.11858/gywlxb.20210770
    [18]
    KANEL G I, UTKIN A V. Estimation of the spall fracture kinetics from the free-surface velocity profiles [J]. AIP Conference Proceedings, 1996, 371(1): 487–490. doi: 10.1063/1.50685
    [19]
    ZHANG N B, LIU Q, YANG K, et al. Effects of shock-induced phase transition on spallation of a mild carbon steel [J]. International Journal of Mechanical Sciences, 2022, 213: 106858. doi: 10.1016/j.ijmecsci.2021.106858
    [20]
    KANEL G I. Spall fracture: methodological aspects, mechanisms and governing factors [J]. International Journal of Fracture, 2010, 163(1/2): 173–191. doi: 10.1007/s10704-009-9438-0
    [21]
    QI M L, BIE B X, ZHAO F P, et al. A metallography and X-ray tomography study of spall damage in ultrapure Al [J]. AIP Advances, 2014, 4(7): 077118. doi: 10.1063/1.4890310
    [22]
    CHENG J C, QIN H L, LI C, et al. Deformation and damage of equiatomic CoCrFeNi high-entropy alloy under plate impact loading [J]. Materials Science and Engineering: A, 2023, 862: 144432. doi: 10.1016/j.msea.2022.144432
    [23]
    孙毅, 向士凯, 耿华运, 等. 自动校准的多相状态方程建模方法及其在锡中的应用 [J]. 高压物理学报, 2023, 37(2): 021301. doi: 10.11858/gywlxb.20220709

    SUN Y, XIANG S K, GENG H Y, et al. Automated calibrated modeling method of multiphase equations of states: applied to tin [J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 021301. doi: 10.11858/gywlxb.20220709
    [24]
    WU F C, LI X H, SUN Y, et al. Multi-phase modeling on spall and recompression process of tin under double shockwaves [J]. The International Conference on Computational & Experimental Engineering and Sciences, 2023, 26(3): 1. doi: 10.32604/icces.2023.09320
    [25]
    王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005: 45–47.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005: 45–47.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(103) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return