Citation: | ZHAO Jinggeng. Crystal Structure and Physica Properties of Perovskite Oxide BaMO3 (M Being Transition Metal)[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050103. doi: 10.11858/gywlxb.20240753 |
[1] |
GOLDSCHMIDT V M. Die gesetze der krystallochemie [J]. Naturwissenschaften, 1926, 14(21): 477–485. doi: 10.1007/BF01507527
|
[2] |
GLAZER A M. The classification of tilted octahedra in perovskites [J]. Acta Crystallographica Section B, 1972, 28(11): 3384–3392. doi: 10.1107/S0567740872007976
|
[3] |
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A, 1976, 32(5): 751–767. doi: 10.1107/S0567739476001551
|
[4] |
NGUYEN L T, CAVA R J. Hexagonal perovskites as quantum materials [J]. Chemical Reviews, 2021, 121(5): 2935–2965. doi: 10.1021/acs.chemrev.0c00622
|
[5] |
AKIMOTO J, GOTOH Y, OSAWA Y. Refinement of hexagonal BaTiO3 [J]. Acta Crystallographica Section C, 1994, 50(2): 160–161.
|
[6] |
HAYWARD S A, REDFERN S A T, STONE H J, et al. Phase transitions in BaTiO3: a high-pressure neutron diffraction study [J]. Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(8): 735–739.
|
[7] |
LIU G, GREEDAN J E. Syntheses, structures, and characterization of 5-layer BaVO3− x (x = 0.2, 0.1, 0.0) [J]. Journal of Solid State Chemistry, 1994, 110(2): 274–289. doi: 10.1006/jssc.1994.1170
|
[8] |
NISHIMURA K, YAMADA I, OKA K, et al. High-pressure synthesis of BaVO3: a new cubic perovskite [J]. Journal of Physics and Chemistry of Solids, 2014, 75(6): 710–712. doi: 10.1016/j.jpcs.2014.02.001
|
[9] |
CHAMBERLAND B L, DANIELSON P S. Alkaline-earth vanadium (Ⅳ) oxides having the AVO3 composition [J]. Journal of Solid State Chemistry, 1971, 3(2): 243–247. doi: 10.1016/0022-4596(71)90035-1
|
[10] |
ARÉVALO-LÓPEZ A M, ATTFIELD J P. High-pressure BaCrO3 polytypes and the 5H-BaCrO2.8 phase [J]. Journal of Solid State Chemistry, 2015, 232: 236–240. doi: 10.1016/j.jssc.2015.09.029
|
[11] |
CHAMBERLAND B L. Crystal structure of the 4H BaCrO3 polytype [J]. Journal of Solid State Chemistry, 1982, 43(3): 309–313. doi: 10.1016/0022-4596(82)90245-6
|
[12] |
CHAMBERLAND B L. Crystal structure of the 6H BaCrO3 polytype [J]. Journal of Solid State Chemistry, 1983, 48(3): 318–322. doi: 10.1016/0022-4596(83)90088-9
|
[13] |
CHAMBERLAND B L. Preparation and crystallographic properties of barium chromate (Ⅳ) polytypes [J]. Inorganic Chemistry, 1969, 8(2): 286–290. doi: 10.1021/ic50072a021
|
[14] |
CHAMBERLAND B L, KATZ L. The structure of the fourteen-layer polytype of barium chromium trioxide, BaCrO3 [J]. Acta Crystallographica Section B, 1982, 38(1): 54–57. doi: 10.1107/S0567740882002039
|
[15] |
HARADEM P S, CHAMBERLAND B L, KATZ L. The structure of the 27-layer polytype of BaCrO3 [J]. Journal of Solid State Chemistry, 1980, 34(1): 59–64. doi: 10.1016/0022-4596(80)90403-X
|
[16] |
ARÉVALO-LÓPEZ A M, REEVES S J, ATTFIELD J P. Ferrimagnetism in the high pressure 6H-perovskite BaCrO3 [J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2014, 640(14): 2727–2729.
|
[17] |
CUSSEN E J, BATTLE P D. Crystal and magnetic structures of 2H BaMnO3 [J]. Chemistry of Materials, 2000, 12(3): 831–838. doi: 10.1021/cm991144j
|
[18] |
SYONO Y, AKIMOTO S I, KOHN K. Structure relations of hexagonal perovskite-like compounds ABX3 at high pressure [J]. Journal of the Physical Society of Japan, 1969, 26(4): 993–999. doi: 10.1143/JPSJ.26.993
|
[19] |
CHRISTENSEN A N, OLLIVIER G. Hydrothermal and high-pressure preparation of some BaMnO3 modifications and low-temperature magnetic properties of BaMnO3(2H) [J]. Journal of Solid State Chemistry, 1972, 4(1): 131–137. doi: 10.1016/0022-4596(72)90141-7
|
[20] |
BOULLAY P, HERVIEU M, LABBÉ P, et al. Single crystal and HREM study of the “Bi-Sr” stabilized BaMnO3 9R polytype [J]. Materials Research Bulletin, 1997, 32(1): 35–42. doi: 10.1016/S0025-5408(96)00169-9
|
[21] |
HARDY A. Structures cristallines de deux variétés allotropiques de manganite de baryum. Nouvelle structure ABO3 [J]. Acta Crystallographica, 1962, 15(3): 179–181. doi: 10.1107/S0365110X6200047X
|
[22] |
QIN S J, CHIN Y Y, ZHOU B W, et al. High-pressure synthesis and magnetism of the 4H-BaMnO3 single crystal and its 6H-type polymorph [J]. Inorganic Chemistry, 2021, 60(21): 16308–16315. doi: 10.1021/acs.inorgchem.1c02155
|
[23] |
ADKIN J J, HAYWARD M A. BaMnO3− x revisited: a structural and magnetic study [J]. Chemistry of Materials, 2007, 19(4): 755–762. doi: 10.1021/cm062055r
|
[24] |
POTOFF A D, CHAMBERLAND B L, KATZ L. A single crystal study of eight-layer barium managanese oxide, BaMnO3 [J]. Journal of Solid State Chemistry, 1973, 8(3): 234–237. doi: 10.1016/0022-4596(73)90090-X
|
[25] |
PARRAS M, GONZÁLEZ-CALBET J M, ALONSO J, et al. Microstructural characterization of BaMnO3− y (0.08 ≤ y ≤ 0.12): evidence for a new polytype (21R) [J]. Journal of Solid State Chemistry, 1994, 113(1): 78–87. doi: 10.1006/jssc.1994.1344
|
[26] |
POOJITHA B, RATHORE A, KUMAR A, et al. Signatures of magnetostriction and spin-phonon coupling in magnetoelectric hexagonal 15R-BaMnO3 [J]. Physical Review B, 2020, 102(13): 134436. doi: 10.1103/PhysRevB.102.134436
|
[27] |
KORNETA O B, QI T F, GE M, et al. Correlated giant dielectric peaks and antiferromagnetic transitions near room temperature in pure and alkali-doped BaMnO3-δ [J]. Journal of Physics: Condensed Matter, 2011, 23(43): 435901. doi: 10.1088/0953-8984/23/43/435901
|
[28] |
GONZÁLEZ-CALBET J M, PARRAS M, ALONSO J, et al. Prediction of novel BaMnO3− y (0 < y < 0.1) perovskite related phases [J]. Journal of Solid State Chemistry, 1994, 111(1): 202–207. doi: 10.1006/jssc.1994.1218
|
[29] |
PARRAS M, VALLET-REGI M, GONZALEZ-CALBET J M, et al. A reassessment of Ba2Fe2O5 [J]. Materials Research Bulletin, 1987, 22(10): 1413–1419. doi: 10.1016/0025-5408(87)90306-0
|
[30] |
MORI K, KAMIYAMA T, KOBAYASHI H, et al. Structural evidence for the charge disproportionation of Fe4+ in BaFeO3−δ [J]. Journal of the Physical Society of Japan, 2003, 72(8): 2024–2028. doi: 10.1143/JPSJ.72.2024
|
[31] |
MORI K, KAMIYAMA T, KOBAYASHI H, et al. Mixed magnetic phase in 6H-type BaFeO3− δ [J]. Journal of Applied Crystallography, 2007, 40(Suppl 1): s501–s505. doi: 10.1107/S0021889807001653
|
[32] |
GÓMEZ M I, LUCOTTI G, DE MORÁN J A, et al. Ab initio structure solution of BaFeO2.8− δ, a new polytype in the system BaFeO y (2.5 ≤ y ≤ 3.0) prepared from the oxidative thermal decomposition of BaFe[(CN)5NO]·3H2O [J]. Journal of Solid State Chemistry, 2001, 160(1): 17–24. doi: 10.1006/jssc.2001.9119
|
[33] |
PARRAS M, VALLETREGI M, GONZALEZCALBET J M, et al. A structural study of 12H-BaFeO2.93 [J]. European Journal of Solid State and Inorganic Chemistry, 1989, 26(3): 299–312.
|
[34] |
TAN Z H, ROMERO F D, SAITO T, et al. Charge disproportionation and interchange transitions in twelve-layer BaFeO3 [J]. Physical Review B, 2020, 102(5): 054404. doi: 10.1103/PhysRevB.102.054404
|
[35] |
HAYASHI N, YAMAMOTO T, KAGEYAMA H, et al. BaFeO3: a ferromagnetic iron oxide [J]. Angewandte Chemie International Edition, 2011, 50(52): 12547–12550.
|
[36] |
MIZUMAKI M, YOSHII K, HAYASHI N, et al. Magnetocaloric effect of field-induced ferromagnet BaFeO3 [J]. Journal of Applied Physics, 2013, 114(7): 073901. doi: 10.1063/1.4818316
|
[37] |
LIU Y X, LIU Z H, LI Z, et al. Multiple magnetic transitions and electrical transport transformation of a BaFeO3 cubic perovskite single crystal [J]. Physical Review B, 2020, 101(14): 144421. doi: 10.1103/PhysRevB.101.144421
|
[38] |
STRAUSS S W, FANKUCHEN I, WARD R. Barium cobalt oxide of the perowskite type [J]. Journal of the American Chemical Society, 1951, 73(11): 5084–5086. doi: 10.1021/ja01155a019
|
[39] |
TAGUCHI H, TAKEDA Y, KANAMARU F, et al. Cobalt trioxide [J]. Acta Crystallographica Section B, 1977, 33(4): 1298–1299. doi: 10.1107/S0567740877005937
|
[40] |
WANG H D, YANG J H, DONG C H, et al. Crystal growth and characterization of the quasi-one-dimensional compound BaCoO3 [J]. Journal of Crystal Growth, 2015, 430: 52–54. doi: 10.1016/j.jcrysgro.2015.08.010
|
[41] |
SUGIYAMA J, NOZAKI H, BREWER J H, et al. Appearance of a two-dimensional antiferromagnetic order in quasi-one-dimensional cobalt oxides [J]. Physical Review B, 2005, 72(6): 064418. doi: 10.1103/PhysRevB.72.064418
|
[42] |
NOZAKI H, JANOSCHEK M, ROESSLI B, et al. Neutron diffraction and μSR study on the antiferromagnet BaCoO3 [J]. Physical Review B, 2007, 76(1): 014402. doi: 10.1103/PhysRevB.76.014402
|
[43] |
BOTTA P M, PARDO V, BALDOMIR D, et al. Dynamic magnetic behavior of BaCoO3 quasi-one-dimensional perovskite [J]. Physical Review B, 2006, 74(21): 214415. doi: 10.1103/PhysRevB.74.214415
|
[44] |
WANG H Z, XU X H, NI D R, et al. Impersonating a superconductor: high-pressure BaCoO3, an insulating ferromagnet [J]. Journal of the American Chemical Society, 2023, 145(39): 21203-21206.
|
[45] |
JACOBSON A J, HUTCHISON J L. An investigation of the structure of 12H BaCoO2.6 by electron microscopy and powder neutron diffraction [J]. Journal of Solid State Chemistry, 1980, 35(3): 334–340. doi: 10.1016/0022-4596(80)90530-7
|
[46] |
PARRAS M, VARELA A, SEEHOFER H, et al. HREM study of the BaCoO3− y system: evidence for a new 5H phase [J]. Journal of Solid State Chemistry, 1995, 120(2): 327–331. doi: 10.1006/jssc.1995.1416
|
[47] |
MENTRÉ O, IORGULESCU M, HUVÉ M, et al. BaCoO2.22: the most oxygen-deficient certified cubic perovskite [J]. Dalton Transactions, 2015, 44(23): 10728–10737.
|
[48] |
LANDER J J. The crystal structures of NiO·BaO3, NiO·BaO, BaNiO3 and intermediate phases with composition near Ba2Ni2O5, with a note on NiO [J]. Acta Crystallographica, 1951, 4(2): 148–156. doi: 10.1107/S0365110X51000441
|
[49] |
TAKEDA Y, SHIMADA M, KANAMARU F, et al. Preparation and magnetic property of BaNiO3 single crystals [J]. Chemistry Letters, 1974, 3(2): 107–108. doi: 10.1246/cl.1974.107
|
[50] |
DONOHUE P C, KATZ L, WARD R. The crystal structure of barium ruthenium oxide and related compounds [J]. Inorganic Chemistry, 1965, 4(3): 306–310. doi: 10.1021/ic50025a010
|
[51] |
RAO M V R, SATHE V G, SORNADURAI D, et al. Electronic structure of ARuO3 (A = Ca, Sr and Ba) compounds [J]. Journal of Physics and Chemistry of Solids, 2001, 62(4): 797–806. doi: 10.1016/S0022-3697(00)00262-6
|
[52] |
HONG S T, SLEIGHT A W. Crystal structure of 4H BaRuO3: high pressure phase prepared at ambient pressure [J]. Journal of Solid State Chemistry, 1997, 128(2): 251–255.
|
[53] |
RIJSSENBEEK J T, JIN R, ZADOROZHNY Y, et al. Electrical and magnetic properties of the two crystallographic forms of BaRuO3 [J]. Physical Review B, 1999, 59(7): 4561–4564. doi: 10.1103/PhysRevB.59.4561
|
[54] |
ZHAO J G, YANG L X, YU Y, et al. Structural and physical properties of the 6H BaRuO3 polymorph synthesized under high pressure [J]. Journal of Solid State Chemistry, 2007, 180(10): 2816–2823. doi: 10.1016/j.jssc.2007.07.031
|
[55] |
JIN C Q, ZHOU J S, GOODENOUGH J B, et al. High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(20): 7115–7119.
|
[56] |
OGAWA T, SATO H. New ternary barium ruthenates: 10H-type BaRuO3 and Ba2Ru7O18 [J]. Journal of Alloys and Compounds, 2004, 383(1/2): 313–318.
|
[57] |
ZHOU J S, MATSUBAYASHI K, UWATOKO Y, et al. Critical behavior of the ferromagnetic perovskite BaRuO3 [J]. Physical Review Letters, 2008, 101(7): 077206. doi: 10.1103/PhysRevLett.101.077206
|
[58] |
NEUMEIER J J, CORNELIUS A L, SCHILLING J S. Influence of pressure on the ferromagnetic transition temperature of SrRuO3 [J]. Physica B: Condensed Matter, 1994, 198(4): 324–328.
|
[59] |
SIEGRIST T, CHAMBERLAND B L. The crystal structure of BaIrO3 [J]. Journal of the Less Common Metals, 1991, 170(1): 93–99. doi: 10.1016/0022-5088(91)90054-8
|
[60] |
CHENG J G, ALONSO J A, SUARD E, et al. A new perovskite polytype in the high-pressure sequence of BaIrO3 [J]. Journal of the American Chemical Society, 2009, 131(21): 7461–7469.
|
[61] |
ZHAO J G, YANG L X, YU Y, et al. Physical properties of the 5M BaIrO3: a new weak ferromagnetic iridate synthesized under high pressure [J]. Solid State Communications, 2010, 150(1): 36–39.
|
[62] |
ZHAO J G, YANG L X, YU Y, et al. Structural and physical properties of the 6M BaIrO3: a new metallic iridate synthesized under high pressure [J]. Inorganic Chemistry, 2009, 48(10): 4290–4294.
|
[63] |
CHENG J G, ISHII T, KOJITANI H, et al. High-pressure synthesis of the BaIrO3 perovskite: a Pauli paramagnetic metal with a Fermi liquid ground state [J]. Physical Review B, 2013, 88(20): 205114. doi: 10.1103/PhysRevB.88.205114
|
[64] |
CHENG J G, ZHOU J S, ALONSO J A, et al. Transition from a weak ferromagnetic insulator to an exchange-enhanced paramagnetic metal in the BaIrO3 polytypes [J]. Physical Review B, 2009, 80(10): 104430. doi: 10.1103/PhysRevB.80.104430
|
[65] |
CAO G, CROW J E, GUERTIN R P, et al. Charge density wave formation accompanying ferromagnetic ordering in quasi-one-dimensional BaIrO3 [J]. Solid State Communications, 2000, 113(11): 657–662. doi: 10.1016/S0038-1098(99)00532-3
|
[66] |
POWELL A V, BATTLE P D. The electronic properties of non-stoichiometric barium iridate, BaIrO3− δ [J]. Journal of Alloys and Compounds, 1993, 191(2): 313–318. doi: 10.1016/0925-8388(93)90085-2
|
[67] |
ZHAO J G, YANG L X, MYDEEN K, et al. Effects of pressure on electrical property of BaIrO3 [J]. Solid State Communications, 2008, 148(9/10): 361–364.
|
[68] |
KIDA T, SENDA A, YOSHII S, et al. Pressure effect on magnetic properties of a weak ferromagnet BaIrO3 [J]. Journal of Physics: Conference Series, 2010, 200(1): 012084. doi: 10.1088/1742-6596/200/1/012084
|
[69] |
SIEGRIST T, LARSON E M, CHAMBERLAND B L. Structural studies of high-pressure Ba-Rh-O phases [J]. Journal of Alloys and Compounds, 1994, 210(1/2): 13–17.
|
[70] |
CHAMBERLAND B L, ANDERSON J B. The preparation and crystal structure of a BaRhO3 polytype [J]. Journal of Solid State Chemistry, 1981, 39(1): 114–119. doi: 10.1016/0022-4596(81)90309-1
|
[71] |
INJAC S D A, XU Y H, ROMERO F D, et al. Pauli-paramagnetic and metallic properties of high pressure polymorphs of BaRhO3 oxides containing Rh2O9 dimers [J]. Dalton Transactions, 2021, 50(13): 4673–4679. doi: 10.1039/D1DT00502B
|
[72] |
MEGAW H D. Crystal structure of double oxides of the perovskite type [J]. Proceedings of the Physical Society, 1946, 58(2): 133–152. doi: 10.1088/0959-5309/58/2/301
|
[73] |
KOPNIN E M, ISTOMIN S Y, D’YACHENKO O G, et al. Synthesis, structure, and resistivity properties of K1− xBa xNbO3 (0.2 ≤ x ≤ 0.5) and K0.5Sr0.5NbO3 [J]. Materials Research Bulletin, 1995, 30(11): 1379–1386. doi: 10.1016/0025-5408(95)00117-4
|
[74] |
CASAIS M T, ALONSO J A, RASINES I, et al. Preparation, neutron structural study and characterization of BaNbO3: a Pauli-like metallic perovskite [J]. Materials Research Bulletin, 1995, 30(2): 201–208.
|
[75] |
BRIXNER L H. X-ray study and electrical properties of system Ba xSr1− xMoO3 [J]. Journal of Inorganic and Nuclear Chemistry, 1960, 14(3/4): 225–230.
|
[76] |
SCHOLDER R, RÄDE D, SCHWARZ H. Über zirkonate, hafnate und thorate von barium, strontium, lithium und natrium [J]. Zeitschrift für Anorganische und Allgemeine Chemie, 1968, 362(3/4): 149–168.
|
[77] |
MULLER O, WHITE W B, ROY R. Crystal chemistry of some technetium-containing oxides [J]. Journal of Inorganic and Nuclear Chemistry, 1964, 26(12): 2075–2086. doi: 10.1016/0022-1902(64)80152-4
|
[78] |
SARKOZY R F, CHAMBERLAND B L. The preparation of several new ternary oxides of osmium [J]. Materials Research Bulletin, 1973, 8(12): 1351–1359. doi: 10.1016/0025-5408(73)90019-6
|
[79] |
CHAMBERLAND B L. Solid state preparations and reactions of ternary alkaline-earth osmium oxides [J]. Materials Research Bulletin, 1978, 13(12): 1273–1280. doi: 10.1016/0025-5408(78)90117-4
|
[80] |
SHI Y G, GUO Y F, SHIRAKO Y, et al. High-pressure synthesis of 5d cubic perovskite BaOsO3 at 17 GPa: ferromagnetic evolution over 3d to 5d series [J]. Journal of the American Chemical Society, 2013, 135(44): 16507–16516. doi: 10.1021/ja4074408
|
[81] |
GALLAGHER P K, JOHNSON JR D W, VOGEL E M, et al. Synthesis and structure of BaPtO3 [J]. Journal of Solid State Chemistry, 1977, 21(4): 277–282. doi: 10.1016/0022-4596(77)90126-8
|
[82] |
CASAPU M, GRUNWALDT J D, MACIEJEWSKI M, et al. Enhancement of activity and self-reactivation of NSR-catalysts by temporary formation of BaPtO3-perovskite [J]. Catalysis Letters, 2008, 120(1/2): 1–7.
|
[83] |
YAMAMOTO T, SHITARA K, KITAGAWA S, et al. Selective hydride occupation in BaVO3− xH x (0.3 ≤ x ≤ 0.8) with face and corner-shared octahedra [J]. Chemistry of Materials, 2018, 30(5): 1566–1574. doi: 10.1021/acs.chemmater.7b04571
|
[84] |
YUSA H, SATA N, OHISHI Y. Rhombohedral (9R) and hexagonal (6H) perovskites in barium silicates under high pressure [J]. American Mineralogist, 2007, 92(4): 648–654.
|
[85] |
HIRAMATSU H, YUSA H, IGARASHI R, et al. An exceptionally narrow band-gap (~4 eV) silicate predicted in the cubic perovskite structure: BaSiO3 [J]. Inorganic Chemistry, 2017, 56(17): 10535–10542. doi: 10.1021/acs.inorgchem.7b01510
|
[86] |
谢亚飞, 姜昌国, 罗兴丽, 等. 6H型六方钙钛矿相BaGeO3 的高温高压合成 [J]. 高压物理学报, 2021, 35(5): 051201. doi: 10.11858/gywlxb.20210761
XIE Y F, JIANG C G, LUO X L, et al. Synthesis of 6H-type hexagonal perovskite phase of BaGeO3 at high temperature and high pressure [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 051201. doi: 10.11858/gywlxb.20210761
|
[87] |
LONGO J M, KAFALAS J A. Pressure-induced structural changes in the system Ba1− xSr xRuO3 [J]. Materials Research Bulletin, 1968, 3(8): 687–692.
|
[88] |
ZHAO J G, YANG L X, YU Y, et al. High-pressure synthesis of orthorhombic SrIrO3 perovskite and its positive magnetoresistance [J]. Journal of Applied Physics, 2008, 103(10): 103706. doi: 10.1063/1.2908879
|
[89] |
CAO G, BOLIVAR J, MCCALL S, et al. Weak ferromagnetism, metal-to-nonmetal transition, and negative differential resistivity in single-crystal Sr2IrO4 [J]. Physical Review B, 1998, 57(18): R11039–R11042. doi: 10.1103/PhysRevB.57.R11039
|
[90] |
CAO G, XIN Y, ALEXANDER C S, et al. Anomalous magnetic and transport behavior in the magnetic insulator Sr3Ir2O7 [J]. Physical Review B, 2002, 66(21): 214412. doi: 10.1103/PhysRevB.66.214412
|