Citation: | ZHOU Mengqian, ZHAN Jinhui, HE Wen, CAO Xiuxia, ZHANG Wei, LIU Xiaoxing. Force-Thermal Coupling Response of Sapphire under Impact Loading Based on Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064204. doi: 10.11858/gywlxb.20240749 |
[1] |
OCKENFELS T, VEWINGER F, WEITZ M. Sapphire optical viewport for high pressure and temperature applications [J]. Review of Scientific Instruments, 2021, 92(6): 065109. doi: 10.1063/5.0047609
|
[2] |
HARE D E, HOLMES N C, WEBB D J. Shock-wave-induced optical emission from sapphire in the stress range 12 to 45 GPa: images and spectra [J]. Physical Review B, 2002, 66(1): 014108. doi: 10.1103/PhysRevB.66.014108
|
[3] |
ZHANG N C, LI D, LI Y Q, et al. The radiation temperature characteristics of sapphire under shock loading [J]. Crystals, 2022, 12(10): 1364. doi: 10.3390/cryst12101364
|
[4] |
张宁超, 王鹏, 华翔, 等. 兆巴压力下蓝宝石发光辐射特性与结构相变 [J]. 光学学报, 2019, 39(7): 0730002. doi: 10.3788/AOS201939.0730002
ZHANG N C, WANG P, HUA X, et al. Optical radiation characteristics and structural phase transition of sapphire under Megabar pressure [J]. Acta Optica Sinica, 2019, 39(7): 0730002. doi: 10.3788/AOS201939.0730002
|
[5] |
LE C T, NGUYEN T T, NGUYEN T T, et al. Molecular dynamics simulation of phase transformation and mechanical behavior in Al2O3 model [J]. Vacuum, 2019, 167: 175–181. doi: 10.1016/j.vacuum.2019.06.010
|
[6] |
ZHANG C, KALIA R K, NAKANO A, et al. Hypervelocity impact induced deformation modes in α-alumina [J]. Applied Physics Letters, 2007, 91(7): 071906. doi: 10.1063/1.2753092
|
[7] |
ZHANG C, KALIA R K, NAKANO A, et al. Deformation mechanisms and damage in α-alumina under hypervelocity impact loading [J]. Journal of Applied Physics, 2008, 103(8): 083508. doi: 10.1063/1.2891797
|
[8] |
ZHANG C, KALIA R K, NAKANO A, et al. Fracture initiation mechanisms in α-alumina under hypervelocity impact [J]. Applied Physics Letters, 2007, 91(12): 121911. doi: 10.1063/1.2786865
|
[9] |
VASHISHTA P, KALIA R K, NAKANO A, et al. Interaction potentials for alumina and molecular dynamics simulations of amorphous and liquid alumina [J]. Journal of Applied Physics, 2008, 103(8): 083504. doi: 10.1063/1.2901171
|
[10] |
XU Q Q, SALLES N, CHEVALIER J, et al. Atomistic simulation and interatomic potential comparison in α-Al2O3: lattice, surface and extended-defects properties [J]. Modelling and Simulation in Materials Science and Engineering, 2022, 30(3): 035008. doi: 10.1088/1361-651X/ac4d76
|
[11] |
BRANICIO P S, KALIA R K, NAKANO A, et al. Atomistic damage mechanisms during hypervelocity projectile impact on AlN: a large-scale parallel molecular dynamics simulation study [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1955–1988. doi: 10.1016/j.jmps.2007.11.004
|
[12] |
BRANICIO P S, NAKANO A, KALIA R K, et al. Shock loading on AlN ceramics: a large scale molecular dynamics study [J]. International Journal of Plasticity, 2013, 51: 122–131. doi: 10.1016/j.ijplas.2013.06.002
|
[13] |
BRANICIO P S, KALIA R K, NAKANO A, et al. Nanoductility induced brittle fracture in shocked high performance ceramics [J]. Applied Physics Letters, 2010, 97(11): 111903. doi: 10.1063/1.3478003
|
[14] |
MAKEEV M A, SRIVASTAVA D. Hypersonic velocity impact on a-SiC target: a diagram of damage characteristics via molecular dynamics simulations [J]. Applied Physics Letters, 2008, 92(15): 151909. doi: 10.1063/1.2894188
|
[15] |
MAKEEV M A, SRIVASTAVA D. Molecular dynamics simulations of hypersonic velocity impact protection properties of CNT/a-SiC composites [J]. Composites Science and Technology, 2008, 68(12): 2451–2455. doi: 10.1016/j.compscitech.2008.04.040
|
[16] |
MAKEEV M A, SUNDARESH S, SRIVASTAVA D. Shock-wave propagation through pristine a-SiC and carbon-nanotube-reinforced a-SiC matrix composites [J]. Journal of Applied Physics, 2009, 106(1): 014311. doi: 10.1063/1.3152587
|
[17] |
FENG L X, LI W H, HAHN E N, et al. Structural phase transition and amorphization in hexagonal SiC subjected to dynamic loading [J]. Mechanics of Materials, 2022, 164: 104139. doi: 10.1016/j.mechmat.2021.104139
|
[18] |
JIANG T L, YU Y, HE H L, et al. Macroscopic shock plasticity of brittle material through designed void patterns [J]. Journal of Applied Physics, 2016, 119(9): 095905. doi: 10.1063/1.4943227
|
[19] |
YU Y, WANG W Q, CHEN K G, et al. Controllable fracture in shocked ceramics: shielding one region from severely fractured state with the sacrifice of another region [J]. International Journal of Solids and Structures, 2018, 135: 137–147. doi: 10.1016/j.ijsolstr.2017.11.016
|
[20] |
喻寅, 王文强, 杨佳, 等. 多孔脆性介质冲击波压缩破坏的细观机理和图像 [J]. 物理学报, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
YU Y, WANG W Q, YANG J, et al. Mesoscopic picture of fracture in porous brittle material under shock wave compression [J]. Acta Physica Sinica, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
|
[21] |
THOMPSON A P, PLIMPTON S J, MATTSON W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions [J]. The Journal of Chemical Physics, 2009, 131(15): 154107. doi: 10.1063/1.3245303
|
[22] |
HAHN E N, GERMANN T C, RAVELO R, et al. On the ultimate tensile strength of tantalum [J]. Acta Materialia, 2017, 126: 313–328. doi: 10.1016/j.actamat.2016.12.033
|
[23] |
MA C, WANG G X, YE C, et al. Shocking of metallic glass to induce microstructure heterogeneity: a molecular dynamics study [J]. Journal of Applied Physics, 2017, 122(9): 095102. doi: 10.1063/1.5000366
|
[24] |
郭志越. 单晶蓝宝石湿法刻蚀机理及表面形貌研究 [D]. 南京: 东南大学, 2019: 11–13.
GUO Z Y. The anisotropic mechanism and topography research of wet etching of single-crystal sapphire [D]. Nanjing: Southeast University, 2019: 11–13.
|
[25] |
胡博, 郭亚洲, 魏秋明, 等. 绝热剪切变形中温升现象的研究进展 [J]. 高压物理学报, 2021, 35(4): 040106. doi: 10.11858/gywlxb.20210728
HU B, GUO Y Z, WEI Q M, et al. Temperature rise during adiabatic shear deformation [J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040106. doi: 10.11858/gywlxb.20210728
|