Volume 38 Issue 6
Nov 2024
Turn off MathJax
Article Contents
ZHOU Mengqian, ZHAN Jinhui, HE Wen, CAO Xiuxia, ZHANG Wei, LIU Xiaoxing. Force-Thermal Coupling Response of Sapphire under Impact Loading Based on Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064204. doi: 10.11858/gywlxb.20240749
Citation: ZHOU Mengqian, ZHAN Jinhui, HE Wen, CAO Xiuxia, ZHANG Wei, LIU Xiaoxing. Force-Thermal Coupling Response of Sapphire under Impact Loading Based on Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064204. doi: 10.11858/gywlxb.20240749

Force-Thermal Coupling Response of Sapphire under Impact Loading Based on Molecular Dynamics Simulation

doi: 10.11858/gywlxb.20240749
  • Received Date: 07 Mar 2024
  • Rev Recd Date: 27 Mar 2024
  • Accepted Date: 22 Apr 2024
  • Available Online: 25 Nov 2024
  • Issue Publish Date: 05 Dec 2024
  • Sapphire is often chosen as the observation window in shock wave experiments due to its excellent strength, hardness and optical transparency. A deep understanding of the mechanical and thermodynamic response mechanisms of sapphire under impact loading and the causes of internal damage is crucial for accurately evaluating its performance and stability. In this work, molecular dynamics simulations were performed to explore the mechanical and thermal response of a sapphire single crystal under shock loading along the C-plane. The results indicate that the activated slip system after the impact loading is the rhombic plane slip based on the R-plane {$0 \overline 1 12 $}. When the impact velocity is in the range of 1−3 km/s, no slip occurs; when the impact velocity reaches 4 km/s, slip occurs. When the impact velocity reaches to the range of 5−6 km/s, the sample shows inhomogeneous deformation, mainly composed of irregular stripes. Such results suggest that the activation of the slip system in sapphire depends not only on its lattice structure, but also on the partial shear stress (which needs to reach a critical value). The analysis of the temperature field indicates that there is an intrinsic relation between the local slip and temperature increase, i.e., the formation of intense shear localization is accompanied by the higher temperature.

     

  • loading
  • [1]
    OCKENFELS T, VEWINGER F, WEITZ M. Sapphire optical viewport for high pressure and temperature applications [J]. Review of Scientific Instruments, 2021, 92(6): 065109. doi: 10.1063/5.0047609
    [2]
    HARE D E, HOLMES N C, WEBB D J. Shock-wave-induced optical emission from sapphire in the stress range 12 to 45 GPa: images and spectra [J]. Physical Review B, 2002, 66(1): 014108. doi: 10.1103/PhysRevB.66.014108
    [3]
    ZHANG N C, LI D, LI Y Q, et al. The radiation temperature characteristics of sapphire under shock loading [J]. Crystals, 2022, 12(10): 1364. doi: 10.3390/cryst12101364
    [4]
    张宁超, 王鹏, 华翔, 等. 兆巴压力下蓝宝石发光辐射特性与结构相变 [J]. 光学学报, 2019, 39(7): 0730002. doi: 10.3788/AOS201939.0730002

    ZHANG N C, WANG P, HUA X, et al. Optical radiation characteristics and structural phase transition of sapphire under Megabar pressure [J]. Acta Optica Sinica, 2019, 39(7): 0730002. doi: 10.3788/AOS201939.0730002
    [5]
    LE C T, NGUYEN T T, NGUYEN T T, et al. Molecular dynamics simulation of phase transformation and mechanical behavior in Al2O3 model [J]. Vacuum, 2019, 167: 175–181. doi: 10.1016/j.vacuum.2019.06.010
    [6]
    ZHANG C, KALIA R K, NAKANO A, et al. Hypervelocity impact induced deformation modes in α-alumina [J]. Applied Physics Letters, 2007, 91(7): 071906. doi: 10.1063/1.2753092
    [7]
    ZHANG C, KALIA R K, NAKANO A, et al. Deformation mechanisms and damage in α-alumina under hypervelocity impact loading [J]. Journal of Applied Physics, 2008, 103(8): 083508. doi: 10.1063/1.2891797
    [8]
    ZHANG C, KALIA R K, NAKANO A, et al. Fracture initiation mechanisms in α-alumina under hypervelocity impact [J]. Applied Physics Letters, 2007, 91(12): 121911. doi: 10.1063/1.2786865
    [9]
    VASHISHTA P, KALIA R K, NAKANO A, et al. Interaction potentials for alumina and molecular dynamics simulations of amorphous and liquid alumina [J]. Journal of Applied Physics, 2008, 103(8): 083504. doi: 10.1063/1.2901171
    [10]
    XU Q Q, SALLES N, CHEVALIER J, et al. Atomistic simulation and interatomic potential comparison in α-Al2O3: lattice, surface and extended-defects properties [J]. Modelling and Simulation in Materials Science and Engineering, 2022, 30(3): 035008. doi: 10.1088/1361-651X/ac4d76
    [11]
    BRANICIO P S, KALIA R K, NAKANO A, et al. Atomistic damage mechanisms during hypervelocity projectile impact on AlN: a large-scale parallel molecular dynamics simulation study [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1955–1988. doi: 10.1016/j.jmps.2007.11.004
    [12]
    BRANICIO P S, NAKANO A, KALIA R K, et al. Shock loading on AlN ceramics: a large scale molecular dynamics study [J]. International Journal of Plasticity, 2013, 51: 122–131. doi: 10.1016/j.ijplas.2013.06.002
    [13]
    BRANICIO P S, KALIA R K, NAKANO A, et al. Nanoductility induced brittle fracture in shocked high performance ceramics [J]. Applied Physics Letters, 2010, 97(11): 111903. doi: 10.1063/1.3478003
    [14]
    MAKEEV M A, SRIVASTAVA D. Hypersonic velocity impact on a-SiC target: a diagram of damage characteristics via molecular dynamics simulations [J]. Applied Physics Letters, 2008, 92(15): 151909. doi: 10.1063/1.2894188
    [15]
    MAKEEV M A, SRIVASTAVA D. Molecular dynamics simulations of hypersonic velocity impact protection properties of CNT/a-SiC composites [J]. Composites Science and Technology, 2008, 68(12): 2451–2455. doi: 10.1016/j.compscitech.2008.04.040
    [16]
    MAKEEV M A, SUNDARESH S, SRIVASTAVA D. Shock-wave propagation through pristine a-SiC and carbon-nanotube-reinforced a-SiC matrix composites [J]. Journal of Applied Physics, 2009, 106(1): 014311. doi: 10.1063/1.3152587
    [17]
    FENG L X, LI W H, HAHN E N, et al. Structural phase transition and amorphization in hexagonal SiC subjected to dynamic loading [J]. Mechanics of Materials, 2022, 164: 104139. doi: 10.1016/j.mechmat.2021.104139
    [18]
    JIANG T L, YU Y, HE H L, et al. Macroscopic shock plasticity of brittle material through designed void patterns [J]. Journal of Applied Physics, 2016, 119(9): 095905. doi: 10.1063/1.4943227
    [19]
    YU Y, WANG W Q, CHEN K G, et al. Controllable fracture in shocked ceramics: shielding one region from severely fractured state with the sacrifice of another region [J]. International Journal of Solids and Structures, 2018, 135: 137–147. doi: 10.1016/j.ijsolstr.2017.11.016
    [20]
    喻寅, 王文强, 杨佳, 等. 多孔脆性介质冲击波压缩破坏的细观机理和图像 [J]. 物理学报, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103

    YU Y, WANG W Q, YANG J, et al. Mesoscopic picture of fracture in porous brittle material under shock wave compression [J]. Acta Physica Sinica, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [21]
    THOMPSON A P, PLIMPTON S J, MATTSON W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions [J]. The Journal of Chemical Physics, 2009, 131(15): 154107. doi: 10.1063/1.3245303
    [22]
    HAHN E N, GERMANN T C, RAVELO R, et al. On the ultimate tensile strength of tantalum [J]. Acta Materialia, 2017, 126: 313–328. doi: 10.1016/j.actamat.2016.12.033
    [23]
    MA C, WANG G X, YE C, et al. Shocking of metallic glass to induce microstructure heterogeneity: a molecular dynamics study [J]. Journal of Applied Physics, 2017, 122(9): 095102. doi: 10.1063/1.5000366
    [24]
    郭志越. 单晶蓝宝石湿法刻蚀机理及表面形貌研究 [D]. 南京: 东南大学, 2019: 11–13.

    GUO Z Y. The anisotropic mechanism and topography research of wet etching of single-crystal sapphire [D]. Nanjing: Southeast University, 2019: 11–13.
    [25]
    胡博, 郭亚洲, 魏秋明, 等. 绝热剪切变形中温升现象的研究进展 [J]. 高压物理学报, 2021, 35(4): 040106. doi: 10.11858/gywlxb.20210728

    HU B, GUO Y Z, WEI Q M, et al. Temperature rise during adiabatic shear deformation [J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040106. doi: 10.11858/gywlxb.20210728
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views(56) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return