Citation: | CHEN Xiaohui, LIU Lei, ZHANG Yi, LI Shourui, JING Qiumin, GAO Junjie, LI Jun. Strain Rate-Dependent Phase Transition Behavior in Silicon[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030102. doi: 10.11858/gywlxb.20240742 |
[1] |
BRIDGMAN P W. The physics of high pressure [M]. New York: MacMillan, 1931.
|
[2] |
BRIDGMAN P W. The nature of thermodynamics [M]. Cambridge: Harvard University Press, 1941.
|
[3] |
AMADOU N, DE RESSEGUIER T, BRAMBRINK E, et al. Kinetics of the iron α-ε phase transition at high-strain rates: experiment and model [J]. Physical Review B, 2016, 93(21): 214108. doi: 10.1103/PhysRevB.93.214108
|
[4] |
GORMAN M G, COLEMAN A L, BRIGGS R, et al. Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth [J]. Scientific Reports, 2018, 8(1): 16927. doi: 10.1038/s41598-018-35260-3
|
[5] |
SMITH R F, EGGERT J H, SWIFT D C, et al. Time-dependence of the alpha to epsilon phase transformation in iron [J]. Journal of Applied Physics, 2013, 114(22): 223507. doi: 10.1063/1.4839655
|
[6] |
YUAN C S, ZHANG X, ZHOU L J, et al. Phase transitions of carbon tetrachloride under static and dynamic pressures [J]. Journal of Molecular Liquids, 2021, 328: 115444. doi: 10.1016/j.molliq.2021.115444
|
[7] |
LIN C L, LIU X Q, YANG D L, et al. Temperature- and rate-dependent pathways in formation of metastable silicon phases under rapid decompression [J]. Physical Review Letters, 2020, 125(15): 155702. doi: 10.1103/PhysRevLett.125.155702
|
[8] |
LIN C L, LIU X Q, YONG X, et al. Temperature-dependent kinetic pathways featuring distinctive thermal-activation mechanisms in structural evolution of ice Ⅶ [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(27): 15437–15442. doi: 10.1073/pnas.2007959117
|
[9] |
YANG D L, LIU J, LIN C L, et al. Phase transitions in bismuth under rapid compression [J]. Chinese Physics B, 2019, 28(3): 036201. doi: 10.1088/1674-1056/28/3/036201
|
[10] |
HUSBAND R J, O’BANNON E F, LIERMANN H P, et al. Compression-rate dependence of pressure-induced phase transitions in Bi [J]. Scientific Reports, 2021, 11(1): 14859. doi: 10.1038/s41598-021-94260-y
|
[11] |
LIN C L, YONG X, TSE J S, et al. Kinetically controlled two-step amorphization and amorphous-amorphous transition in ice [J]. Physical Review Letters, 2017, 119(13): 135701. doi: 10.1103/PhysRevLett.119.135701
|
[12] |
LIN C L, SMITH J S, SINOGEIKIN S V, et al. A metastable liquid melted from a crystalline solid under decompression [J]. Nature Communications, 2017, 8: 14260. doi: 10.1038/ncomms14260
|
[13] |
LI C, WANG C P, HAN J J, et al. A comprehensive study of the high-pressure-temperature phase diagram of silicon [J]. Journal of Materials Science, 2018, 53(10): 7475–7485. doi: 10.1007/s10853-018-2087-9
|
[14] |
TURNEAURE S J, SINCLAIR N, GUPTA Y M. Real-time examination of atomistic mechanisms during shock-induced structural transformation in silicon [J]. Physical Review Letters, 2016, 117(4): 045502. doi: 10.1103/PhysRevLett.117.045502
|
[15] |
PANDOLFI S, BROWN S B, STUBLEY P G, et al. Atomistic deformation mechanism of silicon under laser-driven shock compression [J]. Nature Communications, 2022, 13: 5535. doi: 10.1038/s41467-022-33220-0
|
[16] |
MCBRIDE E E, KRYGIER A, EHNES A, et al. Phase transition lowering in dynamically compressed silicon [J]. Nature Physics, 2019, 15: 89–94. doi: 10.1038/s41567-018-0290-x
|
[17] |
EVANS W J, YOO C S, LEE G W, et al. Dynamic diamond anvil cell (dDAC): a novel device for studying the dynamic-pressure properties of materials [J]. Review of Scientific Instruments, 2007, 78(7): 073904. doi: 10.1063/1.2751409
|
[18] |
SMITH J S, SINOGEIKIN S V, LIN C L, et al. Developments in time-resolved high pressure X-ray diffraction using rapid compression and decompression [J]. Review of Scientific Instruments, 2015, 86(7): 072208. doi: 10.1063/1.4926887
|
[19] |
JENEI Z, LIERMANN H P, HUSBAND R, et al. New dynamic diamond anvil cells for tera-pascal per second fast compression X-ray diffraction experiments [J]. Review of Scientific Instruments, 2019, 90(6): 065114. doi: 10.1063/1.5098993
|
[20] |
苏磊, 杨国强. 动态压力加载/卸载装置dDAC及原位表征技术研究进展 [J]. 高压物理学报, 2021, 35(6): 060102. doi: 10.11858/gywlxb.20210505
SU L, YANG G Q. Research progress of dynamic pressure loading/unloading device and in-situ characterization technology [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 060102. doi: 10.11858/gywlxb.20210505
|
[21] |
CHEN X H, ZHANG Y, YE S J, et al. Time-resolved Raman spectroscopy for monitoring the structural evolution of materials during rapid compression [J]. Review of Scientific Instruments, 2023, 94(12): 123901. doi: 10.1063/5.0172530
|
[22] |
FENG L X, ZHANG X Q, LI W H, et al. Multiple structural phase transitions in single crystal silicon subjected to dynamic loading [J]. Scripta Materialia, 2024, 241: 115890. doi: 10.1016/j.scriptamat.2023.115890
|
[1] | JIANG Yuda, ZHANG Ruizhi, WU Dun, CHEN Han, GAO Weilong, HUANG Zihao, ZHOU Yiheng, ZHANG Jian, HU Jianbo, LUO Guoqiang. Preparation and Quasi-Isentropic Loading Characteristics of Ti-Pt Periodically Modulated Gradient Material[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064205. doi: 10.11858/gywlxb.20240816 |
[2] | TAO Peidong, ZHANG Hongping, ZHANG Zhiyou, LI Mu. Backward Integration Method for Multilayer Target Quasi-Isentropic Compression Experiments[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 012301. doi: 10.11858/gywlxb.20220640 |
[3] | LIU Yi, LI Jianming, ZHOU Zhongyu, PENG Hui, SONG Zhenfei, GU Zhuowei. Compression Stability of Multi-Layer Composite Close-Wound Solenoid Driven by Explosive Implosion[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 063301. doi: 10.11858/gywlxb.20200571 |
[4] | LU Yu, GU Zhuo-Wei. One-Dimensional Magneto-Hydrodynamics Calculation and Analysis of Implosion Magnetic Flux Compression Process[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 419-425. doi: 10.11858/gywlxb.2017.04.010 |
[5] | YANG Long, LI Ping, WANG Gang-Hua, KAN Ming-Xian. Research on the Shockless Compression ofthe Solid Liner Implosion[J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 344-352. doi: 10.11858/gywlxb.2016.04.012 |
[6] | ZHAO Ji-Bo, SUN Cheng-Wei, LUO Bin-Qiang, WANG Gui-Ji, CAI Jin-Tao, TAN Fu-Li. Numerical Analysis on Physical Quantities of Aluminum in Magnetically Driven Isentropic Compression Experiments[J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 279-285. doi: 10.11858/gywlxb.2015.04.007 |
[7] | ZHANG Hong-Ping, LI Mu, KAN Ming-Xian, WANG Gang-Hua, CHONG Tao. Mechanical and Thermal Dissipation Analysis of Aluminum in Quasi-Isentropic Compression[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 169-177. doi: 10.11858/gywlxb.2015.03.002 |
[8] | ZHANG Chong-Yu, HU Hai-Bo, LI Qing-Zhong. Experimental Study on Dynamic Behavior of the Collision Region of Lead Tube Driven by Cylinderical Implosion[J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 884-888. doi: 10.11858/gywlxb.2013.06.014 |
[9] | ZHANG Hong-Ping, WANG Gui-Ji, LI Mu, ZHAO Jian-Heng, SUN Cheng-Wei, TAN Fu-Li, MO Jian-Jun, ZHU Wen-Jun. Yield Strength Analysis of Tantalum in Quasi-Isentropic Compression[J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 321-326 . doi: 10.11858/gywlxb.2011.04.006 |
[10] | CAI Jin-Tao, WANG Gui-Ji, ZHAO Jian-Heng, MO Jian-Jun, WENG Ji-Dong, WU Gang, ZHAO Feng. Magnetically Driven Quasi-Isentropic Compression Experiments of Solid Explosives[J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 455-460 . doi: 10.11858/gywlxb.2010.06.009 |
[11] | WANG Gui-Ji, TAN Fu-Li, SUN Cheng-Wei, ZHAO Jian-Heng, WANG Gang-Hua, MO Jian-Jun, ZHANG Ning, WANG Xiao-Song, WU Gang, HAN Mei. Compression Isentropes of Copper and Aluminum under 40 GPa[J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 266-270 . doi: 10.11858/gywlxb.2009.04.005 |
[12] | WANG Gang-Hua, BAI Jin-Song, SUN Cheng-Wei, MO Jian-Jun, WANG Gui-Ji, ZHAO Jian-Heng, TAN Fu-Li, HU Xi-Jing. Backward Integration Method for Tracing Isentropic Compression Field[J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 149-152 . doi: 10.11858/gywlxb.2008.02.007 |
[13] | SUN Yu-Xin, ZHANG Jin, LI Yong-Chi, HU Shi-Sheng, DONG Jie. Propagation of Stress wave and Spallation of Cylindrical Tube under External Explosive Loading[J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 319-324 . doi: 10.11858/gywlxb.2005.04.006 |
[14] | HU Shao-Ming, LI Chen-Fang. An Investigation on the Entropy Argument in Detonation Models[J]. Chinese Journal of High Pressure Physics, 2004, 18(4): 345-352 . doi: 10.11858/gywlxb.2004.04.010 |
[15] | BAI Jing-Song, LI Ping, CHEN Sen-Hua, LIAO Hai-Dong, YANG Li-Bing, JIANG Yang. Numerical Simulation of the Instability of the Jelly Surfaces under the Imploding Drives[J]. Chinese Journal of High Pressure Physics, 2004, 18(4): 295-301 . doi: 10.11858/gywlxb.2004.04.002 |
[16] | TANG Tie-Gang, HU Hai-Bo, WANG De-Sheng, HU Ba-Yi, LI Qing-Zhong, ZHANG Cong-Yu. Shear Fracture of HR-2 Steel Tube under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2002, 16(1): 75-79 . doi: 10.11858/gywlxb.2002.01.013 |
[17] | HU Xi-Jing, LIU Gui-Xian, LIAO Hai-Dong. Numerical Simulation of X-Rays for Electro-Magnetically Implosion Experiments[J]. Chinese Journal of High Pressure Physics, 2000, 14(1): 54-61 . doi: 10.11858/gywlxb.2000.01.010 |
[18] | HUA Jin-Song, JING Fu-Qian, GONG Zi-Zheng, TAN Hua, XU Nan-Xian, DONG Yu-Bin, CHEN Dong-Quan. Study of Numerical Simulation for Quasi-Isentropic Compression[J]. Chinese Journal of High Pressure Physics, 2000, 14(3): 195-202 . doi: 10.11858/gywlxb.2000.03.007 |
[19] | LIAO Hai-Dong, HU Xi-Jing. A Quasi-One Dimensional Magnetic Hydro-Dynamic Model of Electromagnetic Implosion[J]. Chinese Journal of High Pressure Physics, 1997, 11(3): 189-196 . doi: 10.11858/gywlxb.1997.03.005 |
[20] | DING Feng, HUANG Shi-Hui, JING Fu-Qian, DONG Yu-Bin, LI Ze-Ren. Experimental Studies on the Dynamic Quasi-Isentropic Compression of Oxygen Free-Copper[J]. Chinese Journal of High Pressure Physics, 1990, 4(2): 150-156 . doi: 10.11858/gywlxb.1990.02.012 |