Volume 38 Issue 3
Jun 2024
Turn off MathJax
Article Contents
CHEN Xiaohui, LIU Lei, ZHANG Yi, LI Shourui, JING Qiumin, GAO Junjie, LI Jun. Strain Rate-Dependent Phase Transition Behavior in Silicon[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030102. doi: 10.11858/gywlxb.20240742
Citation: CHEN Xiaohui, LIU Lei, ZHANG Yi, LI Shourui, JING Qiumin, GAO Junjie, LI Jun. Strain Rate-Dependent Phase Transition Behavior in Silicon[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030102. doi: 10.11858/gywlxb.20240742

Strain Rate-Dependent Phase Transition Behavior in Silicon

doi: 10.11858/gywlxb.20240742
  • Received Date: 01 Mar 2024
  • Rev Recd Date: 30 Mar 2024
  • Available Online: 09 May 2024
  • Issue Publish Date: 03 Jun 2024
  • High pressure phase transition is one of the core concerns in the field of condensed matter physics, Earth and planetary science and material science. And the loading strain rate is an important influencing factor for the kinetics of phase transition. Due to the lack of in situ diagnostics of crystal structure under dynamic loading, and the limited experimental research on the phase transition behavior over a wide range of strain rates, there is no unified physical model to describe how the phase transition dynamics evolve from static compression to high strain rate shock compression. Since the high-pressure phase diagram of silicon is extremely rich and possesses a large number of substable phases, and at the same time, the kinetic factors play a crucial role in the high-pressure phase transition process of silicon, silicon is an ideal material for studying the high-pressure phase transition kinetics, which is of great significance for the theoretical modeling of universal phase-transition kinetic processes. Here, we take silicon as an example and present its phase transition behavior under quasi-static, medium strain rate and high strain rate loading in turn, highlighting the effect of loading strain rate on its high-pressure phase transition behavior.

     

  • loading
  • [1]
    BRIDGMAN P W. The physics of high pressure [M]. New York: MacMillan, 1931.
    [2]
    BRIDGMAN P W. The nature of thermodynamics [M]. Cambridge: Harvard University Press, 1941.
    [3]
    AMADOU N, DE RESSEGUIER T, BRAMBRINK E, et al. Kinetics of the iron α-ε phase transition at high-strain rates: experiment and model [J]. Physical Review B, 2016, 93(21): 214108. doi: 10.1103/PhysRevB.93.214108
    [4]
    GORMAN M G, COLEMAN A L, BRIGGS R, et al. Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth [J]. Scientific Reports, 2018, 8(1): 16927. doi: 10.1038/s41598-018-35260-3
    [5]
    SMITH R F, EGGERT J H, SWIFT D C, et al. Time-dependence of the alpha to epsilon phase transformation in iron [J]. Journal of Applied Physics, 2013, 114(22): 223507. doi: 10.1063/1.4839655
    [6]
    YUAN C S, ZHANG X, ZHOU L J, et al. Phase transitions of carbon tetrachloride under static and dynamic pressures [J]. Journal of Molecular Liquids, 2021, 328: 115444. doi: 10.1016/j.molliq.2021.115444
    [7]
    LIN C L, LIU X Q, YANG D L, et al. Temperature- and rate-dependent pathways in formation of metastable silicon phases under rapid decompression [J]. Physical Review Letters, 2020, 125(15): 155702. doi: 10.1103/PhysRevLett.125.155702
    [8]
    LIN C L, LIU X Q, YONG X, et al. Temperature-dependent kinetic pathways featuring distinctive thermal-activation mechanisms in structural evolution of ice Ⅶ [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(27): 15437–15442. doi: 10.1073/pnas.2007959117
    [9]
    YANG D L, LIU J, LIN C L, et al. Phase transitions in bismuth under rapid compression [J]. Chinese Physics B, 2019, 28(3): 036201. doi: 10.1088/1674-1056/28/3/036201
    [10]
    HUSBAND R J, O’BANNON E F, LIERMANN H P, et al. Compression-rate dependence of pressure-induced phase transitions in Bi [J]. Scientific Reports, 2021, 11(1): 14859. doi: 10.1038/s41598-021-94260-y
    [11]
    LIN C L, YONG X, TSE J S, et al. Kinetically controlled two-step amorphization and amorphous-amorphous transition in ice [J]. Physical Review Letters, 2017, 119(13): 135701. doi: 10.1103/PhysRevLett.119.135701
    [12]
    LIN C L, SMITH J S, SINOGEIKIN S V, et al. A metastable liquid melted from a crystalline solid under decompression [J]. Nature Communications, 2017, 8: 14260. doi: 10.1038/ncomms14260
    [13]
    LI C, WANG C P, HAN J J, et al. A comprehensive study of the high-pressure-temperature phase diagram of silicon [J]. Journal of Materials Science, 2018, 53(10): 7475–7485. doi: 10.1007/s10853-018-2087-9
    [14]
    TURNEAURE S J, SINCLAIR N, GUPTA Y M. Real-time examination of atomistic mechanisms during shock-induced structural transformation in silicon [J]. Physical Review Letters, 2016, 117(4): 045502. doi: 10.1103/PhysRevLett.117.045502
    [15]
    PANDOLFI S, BROWN S B, STUBLEY P G, et al. Atomistic deformation mechanism of silicon under laser-driven shock compression [J]. Nature Communications, 2022, 13: 5535. doi: 10.1038/s41467-022-33220-0
    [16]
    MCBRIDE E E, KRYGIER A, EHNES A, et al. Phase transition lowering in dynamically compressed silicon [J]. Nature Physics, 2019, 15: 89–94. doi: 10.1038/s41567-018-0290-x
    [17]
    EVANS W J, YOO C S, LEE G W, et al. Dynamic diamond anvil cell (dDAC): a novel device for studying the dynamic-pressure properties of materials [J]. Review of Scientific Instruments, 2007, 78(7): 073904. doi: 10.1063/1.2751409
    [18]
    SMITH J S, SINOGEIKIN S V, LIN C L, et al. Developments in time-resolved high pressure X-ray diffraction using rapid compression and decompression [J]. Review of Scientific Instruments, 2015, 86(7): 072208. doi: 10.1063/1.4926887
    [19]
    JENEI Z, LIERMANN H P, HUSBAND R, et al. New dynamic diamond anvil cells for tera-pascal per second fast compression X-ray diffraction experiments [J]. Review of Scientific Instruments, 2019, 90(6): 065114. doi: 10.1063/1.5098993
    [20]
    苏磊, 杨国强. 动态压力加载/卸载装置dDAC及原位表征技术研究进展 [J]. 高压物理学报, 2021, 35(6): 060102. doi: 10.11858/gywlxb.20210505

    SU L, YANG G Q. Research progress of dynamic pressure loading/unloading device and in-situ characterization technology [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 060102. doi: 10.11858/gywlxb.20210505
    [21]
    CHEN X H, ZHANG Y, YE S J, et al. Time-resolved Raman spectroscopy for monitoring the structural evolution of materials during rapid compression [J]. Review of Scientific Instruments, 2023, 94(12): 123901. doi: 10.1063/5.0172530
    [22]
    FENG L X, ZHANG X Q, LI W H, et al. Multiple structural phase transitions in single crystal silicon subjected to dynamic loading [J]. Scripta Materialia, 2024, 241: 115890. doi: 10.1016/j.scriptamat.2023.115890
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(212) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return