Citation: | GU Chunmiao, LIU Guanlin, ZHOU Fenghua, LI Kebin. Study on Static and Dynamic Brazilian Splitting Test of Artificial Stones[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054105. doi: 10.11858/gywlxb.20240738 |
[1] |
孙西钊. 冲击波碎石原理与应用 [M]. 北京: 中国科学技术出版社, 2019: 16−23.
|
[2] |
LOSKE A M. Medical and biomedical applications of shock waves [M]. Cham: Springer, 2017: 5−18.
|
[3] |
RASSWEILER J J, TAILLY G G, CHAUSSY C. Progress in lithotriptor technology [J]. EAU Update Series, 2005, 3(1): 17–36. doi: 10.1016/j.euus.2004.11.003
|
[4] |
EISENMENGER W. The mechanisms of stone fragmentation in ESWL [J]. Ultrasound in Medicine & Biology, 2001, 27(5): 683–693. doi: 10.1016/S0301-5629(01)00345-3
|
[5] |
ZHU S L, COCKS F H, PREMINGER G M, et al. The role of stress waves and cavitation in stone comminution in shock wave lithotripsy [J]. Ultrasound in Medicine & Biology, 2002, 28(5): 661–671. doi: 10.1016/S0301-5629(02)00506-9
|
[6] |
XI X F, ZHONG P. Dynamic photoelastic study of the transient stress field in solids during shock wave lithotripsy [J]. The Journal of the Acoustical Society of America, 2001, 109(3): 1226–1239. doi: 10.1121/1.1349183
|
[7] |
CLEVELAND R O, SAPOZHNIKOV O A. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy [J]. The Journal of the Acoustical Society of America, 2005, 118(4): 2667–2676. doi: 10.1121/1.2032187
|
[8] |
LIU Y B, ZHONG P. BegoStone—a new stone phantom for shock wave lithotripsy research (L) [J]. The Journal of the Acoustical Society of America, 2002, 112(4): 1265–1268. doi: 10.1121/1.1501905
|
[9] |
MCATEER J A, WILLIAMS J C JR, CLEVELAND R O, et al. Ultracal-30 gypsum artificial stones for research on the mechanisms of stone breakage in shock wave lithotripsy [J]. Urological Research, 2005, 33(6): 429–434. doi: 10.1007/s00240-005-0503-5
|
[10] |
ESCH E, SIMMONS W N, SANKIN G, et al. A simple method for fabricating artificial kidney stones of different physical properties [J]. Urological Research, 2010, 38(4): 315–319. doi: 10.1007/s00240-010-0298-x
|
[11] |
ZHANG Q B, ZHAO J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads [J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 60: 423–439. doi: 10.1016/j.ijrmms.2013.01.005
|
[12] |
SAPOZHNIKOV O A, MAXWELL A D, MACCONAGHY B, et al. A mechanistic analysis of stone fracture in lithotripsy [J]. The Journal of the Acoustical Society of America, 2007, 121(2): 1190–1202. doi: 10.1121/1.2404894
|
[13] |
JOHRDE L G, COCKS F H. Fracture strength studies of renal calculi [J]. Journal of Materials Science Letters, 1985, 4(10): 1264–1265. doi: 10.1007/bf00723476
|
[14] |
CHUONG C J, ZHONG P, PREMINGER G M. Acoustic and mechanical properties of renal calculi: implications in shock wave lithotripsy [J]. Journal of Endourology, 1993, 7(6): 437–444. doi: 10.1089/end.1993.7.437
|
[15] |
ZHONG P, CHUONG C J, PREMINGER G M. Characterization of fracture toughness of renal calculi using a microindentation technique [J]. Journal of Materials Science Letters, 1993, 12(18): 1460–1462. doi: 10.1007/bf00591608
|
[16] |
BERENBAUM R, BRODIE L. Measurement of the tensile strength of brittle materials [J]. British Journal of Applied Physics, 1959, 10(6): 281. doi: 10.1088/0508-3443/10/6/307
|
[17] |
叶剑红, 杨洋, 常中华, 等. 巴西劈裂试验应力场解析解应力函数解法 [J]. 工程地质学报, 2009, 17(4): 528–532. doi: 10.3969/j.issn.1004-9665.2009.04.015
YE J H, YANG Y, CHANG Z H, et al. Airy stress function method for analytic solution of stress field during Brazilian disc test [J]. Journal of Engineering Geology, 2009, 17(4): 528–532. doi: 10.3969/j.issn.1004-9665.2009.04.015
|
[18] |
МУСХЕЛИШВИЛИ Н И. 数学弹性力学的几个基本问题 [M]. 赵惠元, 译. 北京: 科学出版社, 1958: 249–251.
|
[19] |
TIMOSHENKO S P, GOODIER J N. 弹性理论 [M]. 徐芝纶, 译. 北京: 高等教育出版社, 1990: 140–143.
|
[20] |
ISRM. Suggested methods for determining tensile strength of rock materials [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(3): 99–103. doi: 10.1016/0148-9062(78)90003-7
|
[21] |
KOURKOULIS S K, MARKIDES C F, CHATZISTERGOS P E. The standardized Brazilian disc test as a contact problem [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 57: 132–141. doi: 10.1016/j.ijrmms.2012.07.016
|
[22] |
YU Y, ZHANG J X, ZHANG J C. A modified Brazilian disk tension test [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 421–425. doi: 10.1016/j.ijrmms.2008.04.008
|
[23] |
HONDROS G. The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete [J]. Australian Journal of Applied Science, 1959, 10(3): 243–268.
|
[24] |
MA C C, HUNG K M. Exact full-field analysis of strain and displacement for circular disks subjected to partially distributed compressions [J]. International Journal of Mechanical Sciences, 2008, 50(2): 275–292. doi: 10.1016/j.ijmecsci.2007.06.005
|
[25] |
王启智, 李炼, 吴礼舟, 等. 改进巴西试验: 从平台巴西圆盘到切口巴西圆盘 [J]. 力学学报, 2017, 49(4): 793–801. doi: 10.6052/0459-1879-17-031
WANG Q Z, LI L, WU L Z, et al. Improvement of Brazilian test: from flattened Brazilian disc to grooved Brazilian disc [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 793–801. doi: 10.6052/0459-1879-17-031
|
[26] |
AWAJI H, SATO S. Diametral compressive testing method [J]. Journal of Engineering Materials and Technology, 1979, 101(2): 139–147. doi: 10.1115/1.3443665
|
[27] |
王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005: 52–60.
WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005: 52–60.
|
[28] |
SIMMONS W N, COCKS F H, ZHONG P, et al. A composite kidney stone phantom with mechanical properties controllable over the range of human kidney stones [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3(1): 130–133. doi: 10.1016/J.JMBBM.2009.08.004
|