Citation: | HUANG Qiaoqiao, DENG Qingtian, LI Xinbo, CHEN Li. Deformation Mode and Energy Absorption of Modularized Cellular Structures[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064106. doi: 10.11858/gywlxb.20240737 |
[1] |
BABAEI M, KIARASI F, ASEMI K, et al. Functionally graded saturated porous structures: a review [J]. Journal of Computational Applied Mechanics, 2022, 53(2): 297–308. doi: 10.22059/jcamech.2022.342710.719
|
[2] |
YANG B S, CHEN W H, XIN R L, et al. Pomelo peel-inspired 3D-printed porous structure for efficient absorption of compressive strain energy [J]. Journal of Bionic Engineering, 2022, 19(2): 448–457. doi: 10.1007/s42235-021-00145-1
|
[3] |
AJAJ R M, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft [J]. Progress in Aerospace Sciences, 2021, 120: 100682. doi: 10.1016/j.paerosci.2020.100682
|
[4] |
CHOWDHURY S, YADAIAH N, PRAKASH C, et al. Laser powder bed fusion: a state-of-the-art review of the technology, materials, properties & defects, and numerical modelling [J]. Journal of Materials Research and Technology, 2022, 20: 2109–2172. doi: 10.1016/j.jmrt.2022.07.121
|
[5] |
张欣茹, 邓庆田, 李新波, 等. 预制裂纹参数及相对密度对平面多孔结构裂纹扩展的影响 [J]. 实验力学, 2023, 38(1): 68–80. doi: 10.7520/1001-4888-22-057
ZHANG X R, DENG Q T, LI X B, et al. Influences of prefabricated crack parameters and relative density on crack propagation in planar cellular structures [J]. Journal of Experimental Mechanics, 2023, 38(1): 68–80. doi: 10.7520/1001-4888-22-057
|
[6] |
ZHANG X R, DENG Q T, LI X B. Effects of damage mode on crack propagation pattern in additively manufactured honeycomb cellular panel [J]. Journal of Failure Analysis and Prevention, 2023, 23(5): 2090–2104. doi: 10.1007/s11668-023-01749-x
|
[7] |
SHIVARAM M J, ARYA S B, NAYAK J, et al. Role of porosity on electrochemical corrosion behavior of porous Ti-20Nb-5Ag alloy in simulated body fluid [J]. Materials Today: Proceedings, 2020, 33: 5257–5261. doi: 10.1016/j.matpr.2020.02.952
|
[8] |
李振, 丁洋, 王陶, 等. 新型并联梯度蜂窝结构的面内力学性能 [J]. 复合材料学报, 2020, 37(1): 155–163. doi: 10.13801/j.cnki.fhclxb.20190417.003
LI Z, DING Y, WANG T, et al. In-plane crushing behaviors of honeycombs with a novel parallel graded design [J]. Acta Materiae Compositae Sinica, 2020, 37(1): 155–163. doi: 10.13801/j.cnki.fhclxb.20190417.003
|
[9] |
MA N F, DENG Q T, LI X B. Deformation behaviors and energy absorption of composite re-entrant honeycomb cylindrical shells under axial load [J]. Materials, 2021, 14(23): 7129. doi: 10.3390/ma14237129
|
[10] |
LI T, DENG Q T, LI X B. Energy absorption and deformation modes of several thin-walled tubes under dynamic compression [J]. Structures, 2023, 54: 890–897. doi: 10.1016/j.istruc.2023.05.099
|
[11] |
王雪松, 刘卫东, 刘典. 新型反四手性蜂窝结构的面内拉伸弹性 [J]. 复合材料学报, 2023, 40(8): 4849–4861. doi: 10.13801/j.cnki.fhclxb.20221107.003
WANG X S, LIU W D, LIU D. In-plane tensile elasticity of a novel anti-tetrachiral cellular structure [J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4849–4861. doi: 10.13801/j.cnki.fhclxb.20221107.003
|
[12] |
JIAO C X, YAN G. Design and elastic mechanical response of a novel 3D-printed hexa-chiral helical structure with negative Poisson’s ratio [J]. Materials & Design, 2021, 212: 110219. doi: 10.1016/j.matdes.2021.110219
|
[13] |
ZHOU H Y, JIA K C, WANG X J, et al. Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs [J]. Thin-Walled Structures, 2020, 154: 106898. doi: 10.1016/j.tws.2020.106898
|
[14] |
尤泽华, 肖俊华, 王美芬. 弧边内凹蜂窝负泊松比结构的力学性能 [J]. 复合材料学报, 2022, 39(7): 3570–3580. doi: 10.13801/j.cnki.fhclxb.20210729.003
YOU Z H, XIAO J H, WANG M F. Mechanical properties of arc concave honeycomb structure with negative Poisson’s ratio [J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3570–3580. doi: 10.13801/j.cnki.fhclxb.20210729.003
|
[15] |
卢子兴, 王欢, 杨振宇, 等. 星型-箭头蜂窝结构的面内动态压溃行为 [J]. 复合材料学报, 2019, 36(8): 1893–1900. doi: 10.13801/j.cnki.fhclxb.20180908.001
LU Z X, WANG H, YANG Z Y, et al. In-plane dynamic crushing of star-arrowhead honeycomb structure [J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1893–1900. doi: 10.13801/j.cnki.fhclxb.20180908.001
|
[16] |
杨泽水, 薛玉祥, 刘爱荣. 三维负泊松比星型结构冲击动力学研究 [J]. 工程力学, 2022, 39(Suppl 1): 356–363. doi: 10.6052/j.issn.1000-4750.2021.05.S057
YANG Z S, XUE Y X, LIU A R. Study on the impact dynamics of three-dimensional star-shaped structure with negative Poisson’s ratio [J]. Engineering Mechanics, 2022, 39(Suppl 1): 356–363. doi: 10.6052/j.issn.1000-4750.2021.05.S057
|
[17] |
GUO M F, YANG H, ZHOU Y M, et al. Mechanical properties of 3D hybrid double arrow-head structure with tunable Poisson’s ratio [J]. Aerospace Science and Technology, 2021, 119: 107177. doi: 10.1016/j.ast.2021.107177
|
[18] |
田新宇, 邓庆田, 李新波, 等. 多孔工字梁的准静态压缩稳定性及能量吸收性能 [J]. 高压物理学报, 2023, 37(4): 044103. doi: 10.11858/gywlxb.20230657
TIAN X Y, DENG Q T, LI X B, et al. Quasi-static compression stability and energy absorption performance of cellular I-beam [J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044103. doi: 10.11858/gywlxb.20230657
|
[19] |
王博, 张雄, 徐胜利. 2D周期蜂窝结构面内静动态压缩力学行为研究 [J]. 力学学报, 2009, 41(2): 274–281. doi: 10.6052/0459-1879-2009-2-2007-400
WANG B, ZHANG X, XU S L. Mechanical behavior of 2D periodic honeycombs under in-plane uniaxial compression [J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 274–281. doi: 10.6052/0459-1879-2009-2-2007-400
|
[20] |
龙凯, 谷先广, 韩丹. 考虑泊松效应的材料/结构一体化设计方法 [J]. 复合材料学报, 2017, 34(6): 1252–1260. doi: 10.13801/j.cnki.fhclxb.20161024.001
LONG K, GU X G, HAN D. A concurrent design method for microstructures of materials and macrostructures by considering the Poisson effect [J]. Acta Materiae Compositae Sinica, 2017, 34(6): 1252–1260. doi: 10.13801/j.cnki.fhclxb.20161024.001
|
[21] |
BATES S R G, FARROW I R, TRASK R S. 3D printed polyurethane honeycombs for repeated tailored energy absorption [J]. Materials & Design, 2016, 112: 172–183. doi: 10.1016/j.matdes.2016.08.062
|
[22] |
ZHOU J, LIU H B, DEAR J P, et al. Comparison of different quasi-static loading conditions of additively manufactured composite hexagonal and auxetic cellular structures [J]. International Journal of Mechanical Sciences, 2023, 244: 108054. doi: 10.1016/j.ijmecsci.2022.108054
|
[23] |
LI Y, CHEN Z H, XIAO D B, et al. The dynamic response of shallow sandwich arch with auxetic metallic honeycomb core under localized impulsive loading [J]. International Journal of Impact Engineering, 2020, 137: 103442. doi: 10.1016/j.ijimpeng.2019.103442
|
[24] |
LUO H C, REN X, ZHANG Y, et al. Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression [J]. Composite Structures, 2022, 280: 114922. doi: 10.1016/j.compstruct.2021.114922
|
[25] |
OH J H, KIM J S, NGUYEN V H, et al. Auxetic graphene oxide-porous foam for acoustic wave and shock energy dissipation [J]. Composites Part B: Engineering, 2020, 186: 107817. doi: 10.1016/j.compositesb.2020.107817
|