Volume 38 Issue 5
Sep 2024
Turn off MathJax
Article Contents
PENG Hongbo, HOU Runfeng, LI Xuyang, WANG Jizhen, BAI Chunyu, SHI Xiaopeng. A Numerical Modeling Method of Gelatin Bird Projectile Suitable for Wide-Speed-Range Impact[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054201. doi: 10.11858/gywlxb.20240726
Citation: PENG Hongbo, HOU Runfeng, LI Xuyang, WANG Jizhen, BAI Chunyu, SHI Xiaopeng. A Numerical Modeling Method of Gelatin Bird Projectile Suitable for Wide-Speed-Range Impact[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054201. doi: 10.11858/gywlxb.20240726

A Numerical Modeling Method of Gelatin Bird Projectile Suitable for Wide-Speed-Range Impact

doi: 10.11858/gywlxb.20240726
  • Received Date: 06 Feb 2024
  • Rev Recd Date: 29 Mar 2024
  • Available Online: 15 Jul 2024
  • Issue Publish Date: 29 Sep 2024
  • Previous studies revealed that gelatin birds show different mechanical behaviors at different impact velocities. In order to solve the problem that the traditional constitutive methods of gelatin bird cannot be universal in different velocity ranges, the tests of 330 g gelatin birds impacting rigid aluminum alloy plate at 60° and 90° incident angles, covering a velocity range of 70−190 m/s were carried out to record the impact force data and impact morphology. With the increase of velocity, the birds were broken more fully and smaller fragments were observed. The adaptive FEM-SPH (finite element method-smoothed particle hydrodynamics) model of bird was established in LS-DYNA, and a set of constitutive parameters were inverted according to the test results: tangent modulus equals to 1.33 MPa, shear modulus equals to 115.95 MPa, the parameters of Murnaghan equation of state γ equals to 10.49, k0 equals to 69.77 MPa, bulk modulus equals to 246.4 MPa, failure plastic strain is 1.15, yield stress is 0.21 MPa. The simulation results were in good agreement with the test results, and had higher accuracy compared to the SPH models and the Lagrangian models. The Hugoniot pressure of the adaptive model had the same change trend as the theoretical value, and the stagnation pressure was close to the theoretical value.

     

  • loading
  • [1]
    GUIDA M, MARULO F, BELKHELFA F Z, et al. A review of the bird impact process and validation of the SPH impact model for aircraft structures [J]. Progress in Aerospace Sciences, 2022, 129: 100787. doi: 10.1016/j.paerosci.2021.100787
    [2]
    张迎春, 陆晓华, 张柱国. 运输类飞机鸟撞适航要求解析及审定实践 [M]. 北京: 科学出版社, 2023: 39–40.

    ZHANG Y C, LU X H, ZHANG Z G. Transport category airplane bird-strike airworthiness regulations interpretation and certification practice [M]. Beijing: Science Press, 2023: 39–40.
    [3]
    刘小川, 王计真, 白春玉. 人工鸟研究进展及在飞机结构抗鸟撞中的应用 [J]. 振动与冲击, 2021, 40(12): 80–89. doi: 10.13465/j.cnki.jvs.2021.12.011

    LIU X C, WANG J Z, BAI C Y. Overview on artificial bird and application on the structural bird-strike [J]. Journal of Vibration and Shock, 2021, 40(12): 80–89. doi: 10.13465/j.cnki.jvs.2021.12.011
    [4]
    LAVOIE M A, GAKWAYA A, ENSAN M N, et al. Bird’s substitute tests results and evaluation of available numerical methods [J]. International Journal of Impact Engineering, 2009, 36(10/11): 1276–1287. doi: 10.1016/j.ijimpeng.2009.03.009
    [5]
    王富生, 李立州, 王新军, 等. 鸟体材料参数的一种反演方法 [J]. 航空学报, 2007, 28(2): 344–347. doi: 10.3321/j.issn:1000-6893.2007.02.018

    WANG F S, LI L Z, WANG X J, et al. A method to identify bird’s material parameters [J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 344–347. doi: 10.3321/j.issn:1000-6893.2007.02.018
    [6]
    LIU J, LI Y L, GAO X S. Bird strike on a flat plate: experiments and numerical simulations [J]. International Journal of Impact Engineering, 2014, 70: 21–37. doi: 10.1016/j.ijimpeng.2014.03.006
    [7]
    王计真, 刘小川. 鸟撞平板试验与鸟体本构参数识别方法 [J]. 航空学报, 2017, 38(Suppl 1): 721550. doi: 10.7527/S1000-6893.2017.721550

    WANG J Z, LIU X C. Test of bird striking on panel and identification method for bird constitutive parameters [J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(Suppl 1): 721550. doi: 10.7527/S1000-6893.2017.721550
    [8]
    ZHANG Y L, ZHOU Y D. Evaluating constitutive models of smoothed particle hydrodynamics for bird-strike simulation [J]. International Journal of Crashworthiness, 2023: 1–10. doi: 10.1080/13588265.2023.2258650
    [9]
    YU P, YU S L, HE S, et al. Inversion for constitutive model parameters of bird in case of bird striking [J]. Shock and Vibration, 2022: 2456777. doi: 10.1155/2022/2456777
    [10]
    ZAKIR S M, LI Y L. Dynamic response of the leading edge wing under soft body impact [J]. International Journal of Crashworthiness, 2012, 17(4): 357–376. doi: 10.1080/13588265.2012.661239
    [11]
    冯振宇, 霍雨佳, 裴惠, 等. 明胶鸟弹撞击力传感器试验及数值建模方法研究 [J]. 振动与冲击, 2019, 38(12): 206–212. doi: 10.13465/j.cnki.jvs.2019.12.029

    FENG Z Y, HUO Y J, PEI H, et al. An experiment and numerical modeling method of gelatin bird striking on force sensors [J]. Journal of Vibration and Shock, 2019, 38(12): 206–212. doi: 10.13465/j.cnki.jvs.2019.12.029
    [12]
    ASLAM M A, RAYHAN S B, KE Z G, et al. Ballistic gelatin Lagrange Mooney-Rivlin material model as a substitute of bird in finite element bird strike case studies [J]. Latin American Journal of Solids and Structures, 2020, 17(6): e298. doi: 10.1590/1679-78256215
    [13]
    PERNAS-SÁNCHEZ J, ARTERO-GUERRERO J, VARAS D, et al. Artificial bird strike on Hopkinson tube device: experimental and numerical analysis [J]. International Journal of Impact Engineering, 2020, 138: 103477. doi: 10.1016/j.ijimpeng.2019.103477
    [14]
    刘小川, 郭军, 孙侠生, 等. 用于鸟撞试验的仿真鸟弹研究 [J]. 实验力学, 2012, 27(5): 623–629.

    LIU X C, GUO J, SUN X S, et al. Investigation on the artificial bird projectile used in bird strike test [J]. Journal of Experimental Mechanics, 2012, 27(5): 623–629.
    [15]
    YANG X F, LIU M B, PENG S L. Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability [J]. Computers & Fluids, 2014, 92: 199–208. doi: 10.1016/j.compfluid.2014.01.002
    [16]
    刘军, 李玉龙, 郭伟国, 等. 鸟撞45#钢平板动响应试验研究 [J]. 振动与冲击, 2013, 32(4): 15–20. doi: 10.3969/j.issn.1000-3835.2013.04.004

    LIU J, LI Y L, GUO W G, et al. Tests for bird striking on a plate made of 45# steel [J]. Journal of Vibration and Shock, 2013, 32(4): 15–20. doi: 10.3969/j.issn.1000-3835.2013.04.004
    [17]
    HE Q G, CHEN X W, CHEN J F. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud [J]. Acta Astronautica, 2020, 175: 99–117. doi: 10.1016/j.actaastro.2020.05.056
    [18]
    LAVOIE M A, GAKWAYA A, ENSAN M N, et al. Validation of available approaches for numerical bird strike modeling tools [J]. International Review of Mechanical Engineering, 2007, 1(4): 380–389.
    [19]
    WILBECK J S. Impact behavior of low strength projectiles [D]. College Station: Texas A&M University, 1977.
    [20]
    JOHNSON A F, HOLZAPFEL M. Modelling soft body impact on composite structures [J]. Composite Structures, 2003, 61(1/2): 103–113. doi: 10.1016/S0263-8223(03)00033-3
    [21]
    AIROLDI A, CACCHIONE B. Modelling of impact forces and pressures in Lagrangian bird strike analyses [J]. International Journal of Impact Engineering, 2006, 32(10): 1651–1677. doi: 10.1016/j.ijimpeng.2005.04.011
    [22]
    JENQ S T, HSIAO F B, LIN I C, et al. Simulation of a rigid plate hit by a cylindrical hemi-spherical tip-ended soft impactor [J]. Computational Materials Science, 2007, 39(3): 518–526. doi: 10.1016/j.commatsci.2006.08.008
    [23]
    THO C H, SMITH M R. Accurate bird strike simulation methodology for BA609 tiltrotor [J]. Journal of the American Helicopter Society, 2011, 56(1): 12007. doi: 10.4050/JAHS.56.012007
    [24]
    MEGUID S A, MAO R H, NG T Y. FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade [J]. International Journal of Impact Engineering, 2008, 35(6): 487–498. doi: 10.1016/j.ijimpeng.2007.04.008
    [25]
    SMOJVER I, IVANČEVIĆ D. Numerical simulation of bird strike damage prediction in airplane flap structure [J]. Composite Structures, 2010, 92(9): 2016–2026. doi: 10.1016/j.compstruct.2009.12.006
    [26]
    SMOJVER I, IVANČEVIĆ D. Advanced modelling of bird strike on high lift devices using hybrid Eulerian-Lagrangian formulation [J]. Aerospace Science and Technology, 2012, 23(1): 224–232. doi: 10.1016/j.ast.2011.07.010
    [27]
    HEDAYATI R, SADIGHI M, MOHAMMADI-AGHDAM M. On the difference of pressure readings from the numerical, experimental and theoretical results in different bird strike studies [J]. Aerospace Science and Technology, 2014, 32(1): 260–266. doi: 10.1016/j.ast.2013.10.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article views(160) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return