Citation: | ZHU Haolin, ZHANG Tianhui, LIU Zhifang. Dynamic Responses of Aluminum Foam Sandwich Shells under Repeated Impact Loadings[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054205. doi: 10.11858/gywlxb.20240721 |
[1] |
SINGH P, SHEIKH J, BEHERA B K. Metal-faced sandwich composite panels: a review [J]. Thin-Walled Structures, 2024, 195: 111376. doi: 10.1016/j.tws.2023.111376
|
[2] |
PALOMBA G, EPASTO G, CRUPI V. Lightweight sandwich structures for marine applications: a review [J]. Mechanics of Advanced Materials and Structures, 2022, 29(26): 4839–4864. doi: 10.1080/15376494.2021.1941448
|
[3] |
XIANG C P, QIN Q H, WANG M S, et al. Low-velocity impact response of sandwich beams with a metal foam core: experimental and theoretical investigations [J]. International Journal of Impact Engineering, 2019, 130: 172–183. doi: 10.1016/j.ijimpeng.2019.04.014
|
[4] |
JING L, SU X Y, CHEN D, et al. Experimental and numerical study of sandwich beams with layered-gradient foam cores under low-velocity impact [J]. Thin-Walled Structures, 2019, 135: 227–244. doi: 10.1016/j.tws.2018.11.011
|
[5] |
ZHANG W, QIN Q H, LI J F, et al. Deformation and failure of hybrid composite sandwich beams with a metal foam core under quasi-static load and low-velocity impact [J]. Composite Structures, 2020, 242: 112175. doi: 10.1016/j.compstruct.2020.112175
|
[6] |
ZHAO Y, YANG Z H, YU T L, et al. Mechanical properties and energy absorption capabilities of aluminium foam sandwich structure subjected to low-velocity impact [J]. Construction and Building Materials, 2021, 273: 121996. doi: 10.1016/j.conbuildmat.2020.121996
|
[7] |
敬霖. 强动载荷作用下泡沫金属夹芯壳结构的动力学行为及其失效机理研究 [D]. 太原: 太原理工大学, 2012: 162–166.
JING L. The dynamic mechanical behavior and failure mechanism of sandwich shells with metallic foam cores under intensive loading [D]. Taiyuan: Taiyuan University of Technology, 2012: 162–166.
|
[8] |
JING L, WANG Z H, ZHAO M L. Response of metallic cylindrical sandwich shells subjected to projectile impact: experimental investigations [J]. Composite Structures, 2014, 107: 36–47. doi: 10.1016/j.compstruct.2013.07.011
|
[9] |
ZHOU X F, JING L. Low-velocity impact response of sandwich panels with layered-gradient metal foam cores [J]. International Journal of Impact Engineering, 2024, 184: 104808. doi: 10.1016/j.ijimpeng.2023.104808
|
[10] |
朱凌, 蔡伟, 史诗韵, 等. 反复碰撞载荷下船体结构弹塑性动态响应研究进展 [J]. 船舶力学, 2021, 25(2): 256–262. doi: 10.3969/j.issn.1007-7294.2021.02.014
ZHU L, CAI W, SHI S Y, et al. Review on elastic-plastic dynamic responses of ship structures under repeated impact loadings [J]. Journal of Ship Mechanics, 2021, 25(2): 256–262. doi: 10.3969/j.issn.1007-7294.2021.02.014
|
[11] |
XIAO W, LI Y G, HU Y, et al. Analytical study on the dynamic mechanical behaviours of foam-core sandwich plate under repeated impacts [J]. Thin-Walled Structures, 2024, 196: 111480. doi: 10.1016/j.tws.2023.111480
|
[12] |
朱凌, 郭开岭, 余同希, 等. 泡沫金属夹芯梁在重复冲击下的动态响应 [J]. 爆炸与冲击, 2021, 41(7): 073101. doi: 10.11883/bzycj-2020-0198
ZHU L, GUO K L, YU T X, et al. Dynamic responses of metal foam sandwich beams to repeated impacts [J]. Explosion and Shock Waves, 2021, 41(7): 073101. doi: 10.11883/bzycj-2020-0198
|
[13] |
GUO K L, MU M Y, ZHOU S, et al. Dynamic responses of metal foam sandwich beam under repeated impacts considering impact location and face thickness distribution [J]. Composites Part C: Open Access, 2023, 11: 100372. doi: 10.1016/j.jcomc.2023.100372
|
[14] |
GUO K L, ZHU L, LI Y G, et al. Experimental investigation on the dynamic behaviour of aluminum foam sandwich plate under repeated impacts [J]. Composite Structures, 2018, 200: 298–305. doi: 10.1016/j.compstruct.2018.05.148
|
[15] |
GUO K L, ZHU L, LI Y G, et al. Numerical study on mechanical behavior of foam core sandwich plates under repeated impact loadings [J]. Composite Structures, 2019, 224: 111030. doi: 10.1016/j.compstruct.2019.111030
|
[16] |
郭开岭. 重复冲击载荷下船用泡沫金属夹芯结构动态力学行为研究 [D]. 武汉: 武汉理工大学, 2019: 137–164.
GUO K L. Dynamic behavior of metal foam sandwich structures for ship under repeated impact loadings [D]. Wuhan: Wuhan University of Technology, 2019: 137–164.
|
[17] |
LIU K, KANG S B, GAO S. Experimental and analytical study on impact response of stainless steel-aluminium foam-alloy steel sandwich panels [J]. International Journal of Impact Engineering, 2023, 179: 104661. doi: 10.1016/j.ijimpeng.2023.104661
|
[18] |
KUMAR P, STARGEL D S, SHUKLA A. Effect of plate curvature on blast response of carbon composite panels [J]. Composite Structures, 2013, 99: 19–30. doi: 10.1016/j.compstruct.2012.11.036
|
[19] |
LI X, HAO X, LI S Q, et al. Dynamic behavior of single curved fiber-metal hybrid lamina composite shells under blast loading-experimental observations [J]. Composites Science and Technology, 2023, 234: 109930. doi: 10.1016/j.compscitech.2023.109930
|
[20] |
DESHPANDE V S, FLECK N A. Isotropic constitutive models for metallic foams [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(6/7): 1253–1283. doi: 10.1016/S0022-5096(99)00082-4
|
[21] |
ABRAMOWICZ W, JONES N. Dynamic axial crushing of square tubes [J]. International Journal of Impact Engineering, 1984, 2(2): 179–208. doi: 10.1016/0734-743X(84)90005-8
|
[1] | HE Zhiwei, YUE Jiawei, HUANG Zhenyi, HU Qianhao, ZHOU Shengtao. Influence of Ammonium Formate Content on Rheological and Thermal Decomposition Properties of On-Site Mixed Emulsion Matrix[J]. Chinese Journal of High Pressure Physics, 2025, 39(1): 011302. doi: 10.11858/gywlxb.20240845 |
[2] | LI Tianhao, WU Hongbo, WANG Quan, HUANG Wenyao, SUN Yanchen, NIU Caoyuan, HUANG Guoshu, YE Ziyang. Effect of Water Content on the Performance of Porous Granular Ammonium Nitrate On-Site Mixed Ammonium Amine Explosive[J]. Chinese Journal of High Pressure Physics, 2025, 39(3): 031302. doi: 10.11858/gywlxb.20240885 |
[3] | ZHU Zhengde, LIU Feng, KUANG Zhao, FU Jiakun. Influence of Silicon Nitride Content on Explosive Performance of Bulk Emulsion Explosive[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251031 |
[4] | LIU Sai, HAN Tifei, WANG Meng, CHEN Kaiqiang, LIU Guangpeng, JIANG Xin, SUN Yanchen. Effect of Low Temperature Environments on the Explosive Properties of Emulsion Explosives[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 045201. doi: 10.11858/gywlxb.20240712 |
[5] | HU Jie, HUANG Wenyao, SUN Yanchen, NIU Caoyuan, LIANG Hao, SHI Ran. Effect of Hexamethylenetetramine Content on the Performance of Ammonium-Amine Explosives[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 055201. doi: 10.11858/gywlxb.20230691 |
[6] | CHEN Wen, GUO Baoqiao, GUO Yansong, LUAN Kedi, RAN Chun, CHEN Pengwan. Effect of Aging Temperature on Dynamic Mechanical Properties of TB8 Titanium Alloy[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054102. doi: 10.11858/gywlxb.20220528 |
[7] | ZHANG Zhao, GUO Baoqiao, RAN Chun, CHEN Wen, CHEN Pengwan. Effect of Solution Temperature on Dynamic Mechanical Properties and Microstructure of TB6 Titanium Alloy[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064104. doi: 10.11858/gywlxb.20210762 |
[8] | BAI Gang, ZHOU Xihua, SONG Dongping. Experimental Study on the Coupling Influence of Temperature and CO Concentration on CH4 Explosion Limit[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045203. doi: 10.11858/gywlxb.20180612 |
[9] | BAI Chunhua, ZHANG Chengjun, LIU Nan, YAO Ning. Experimental Study on the Effects of Ambient Temperature on Explosion Characteristics of Multiphase Mixtures[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045202. doi: 10.11858/gywlxb.20180648 |
[10] | REN Xianda, LIU Jiaqiong, TANG Zhen, WU Xiaogang, CHEN Weiyi. Experimental Analysis of Fatigue Performance in Transmission Lines at Different Annealing Temperatures[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045902. doi: 10.11858/gywlxb.20180566 |
[11] | YIN Xiaowen, TIAN Ze, HAN Yang, LI Zhiqiang. Numerical Simulation on Fluid Causing Fatigue of Industrial Pipeline System[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 064102. doi: 10.11858/gywlxb.20180559 |
[12] | WANG Mingye, HAN Zhiwei, LI Xi, WANG Boliang. Influence of Aluminum Particle Size on Explosion Performance and Thermal Stability of Thermobaric Explosive[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035201. doi: 10.11858/gywlxb.20170627 |
[13] | WAN Xiao-Zhi, MA Hong-Hao, SHEN Zhao-Wu, CHEN Wei. A Comparative Analysis of Underwater Explosion Properties for High-Content Aluminum Foil and Aluminum Powder Explosives[J]. Chinese Journal of High Pressure Physics, 2016, 30(1): 42-48. doi: 10.11858/gywlxb.2016.01.007 |
[14] | LIN Mou-Jin, MA Hong-Hao, SHEN Zhao-Wu, FAN Zhi-Qiang. Underwater Detonation Behavior of Aluminum Fiber Explosive[J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 557-563. doi: 10.11858/gywlxb.2014.05.008 |
[15] | CHEN Ding-Ding, LU Fang-Yun, LIN Yu-Liang, JIANG Bang-Hai. Effects of Strain Rate and Temperature on Compressive Properties of an Aluminized PBX[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 361-366. doi: 10.11858/gywlxb.2013.03.007 |
[16] | DONG Gang, FAN Bao-Chun. The Numerical Investigations of Standing Detonation Wave Structure and Performance at the Different Initial Temperatures[J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 193-199 . doi: 10.11858/gywlxb.2011.03.001 |
[17] | ZHANG Yuan-Ping, CHI Jia-Chun, GONG Yan-Qing, WANG Guang-Jun. Experimental Study on Underwater Explosion Performance of Aluminized Explosive[J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 316-320 . doi: 10.11858/gywlxb.2010.04.013 |
[18] | HAN Liang, ZHOU Yong-Sheng, DANG Jia-Xiang, HE Chang-Rong, YAO Wen-Ming. Temperature Calibration for 3 GPa Molten Salt Medium Triaxial Pressure Vessel[J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 407-414 . doi: 10.11858/gywlxb.2009.06.002 |
[19] | YAN Hong-Hao, LI Xiao-Jie, XI Jin-Yi, DONG Shou-Hua. Temperature Field Model for Explosive Welded Multilayer Amorphous Foils[J]. Chinese Journal of High Pressure Physics, 2002, 16(1): 65-69 . doi: 10.11858/gywlxb.2002.01.011 |
[20] | SUN Zhen-Wu. The Influence of the Pressure, Temperature and Time on the Properties of Sintered Diamond Compacts[J]. Chinese Journal of High Pressure Physics, 1999, 13(4): 278-282 . doi: 10.11858/gywlxb.1999.04.007 |