
Citation: | HE Yu, SUN Shichuan, LI Heping. Superionic Iron Alloys in Earth’s Inner Core and Their Effects[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030202. doi: 10.11858/gywlxb.20240707 |
火炮发射时,后效期高温高压的火药气体从膛口瞬时流出,对火炮主体形成很强的后坐力,对炮架产生强冲击作用,影响火炮射击精度和机动性能,制约高性能火炮的发展。炮口制退器作为一种安装在炮口部位的排气装置,通过控制后效期火药气体的流量分配和气流速度,减小射击时火药气体作用于后坐部分的冲量,并为炮身提供制退力,减小火炮后坐动能和炮架的射击载荷,因而成为一种广泛应用的反后坐技术[1]。然而,炮口制退器的使用具有一定的负面效应。一方面,炮口制退器造成炮口区域强激波,加剧后效期火药气体流场的复杂性及膛口焰现象,加大火炮发射初速扰动及膛口冲击波超压,对火炮身管周围设备及操作人员造成不良影响;另一方面,加装制退器后火炮身管本身质量及挠度的增大也对射击精度造成不利影响。炮口制退器自身的质量和结构决定了其制退性能及负面危害表现,通过选材及结构的优化设计实现高性能、低危害的综合性能成为当前炮口制退器研究与发展的方向[2–6]。
按照结构形式的不同,传统的炮口制退器分为冲击式、反作用式及冲击反作用式。由于工艺、重量的限制,高效率与低负面效应往往难以兼顾。近年来,增材制造技术的发展为复杂异型结构的加工制造以及钛合金等难加工轻金属材料的成型制备提供了有力支撑[7],也为传统装置结构的优化与创新设计提供了更大的自由空间。随着计算机技术和计算流体力学的发展,数值模拟已成为低成本研究膛口流场及膛口装置的重要手段,例如:张焕好等[8–9]、代淑兰等[10]利用数值模拟方法,对不同类型炮口制退器的膛口流场波系、膛口激波及二次焰特征进行了详细研究,得到了制退器装置效率;Lei等[11]、Chaturvedi等[12]通过将流场仿真与流固耦合相结合,实现了炮口制退器结构应力与变形响应研究及性能评价。本研究利用增材制造技术优势,针对机载火炮小口径炮口制退器综合性能的设计需求,提出一种叠加冲击式与反作用式传统制退器结构特征与优点的钛合金新型炮口制退器结构方案,对膛口流场发展过程及特征进行数值模拟分析,并以传统的高效率冲击式炮口制退器为参照,对新型结构制退器的综合性能予以评价。
炮口制退器的基本构型是后端与炮管封闭相接,前端收缩,中间拥有膨胀腔室、内部挡板和侧孔的圆筒形结构。冲击式炮口制退器有较大的腔室直径和侧孔面积,火药气体膨胀较为充分,大部分经侧向流出并冲击反射挡板,制退效率高,但炮口冲击波危害也较大。反作用式炮口制退器的直径一般较小,拥有多排小面积侧孔,没有或有很小的反射挡板,制退效率较低,但膛口火药气体流场相对简单,对弹丸初速的扰动小,不会影响大威力脱壳穿甲弹发射。基于上述两种制退器的结构特征和性能的经验规律,本研究以低冲击波危害和高制退效率为导向,在三维建模平台上设计一种面向机载航炮的30 mm小口径新型结构炮口制退器,如图1所示。
新型制退器内层为冲击式内壁结构,见图1,其上设置编号为1~3的3组阵列式大面积后倾侧孔,旨在引导火药气体出膛后的侧向分流,以实现类似于冲击式炮口制退器的高制退效率。此外,3组内层侧孔的后倾角度及面积采用非均等设计,参照一般冲击式炮口制退器的结构参数,对三维设计模型直接设定或导出得到内层侧孔的非均等结构参数,见表1。其中:为了限制火药气体在临近膛口位置的向后偏转角度及炮口后方冲击波的强度,第1组侧孔的后倾角度及面积均小于其他两组;根据火药气体出膛以后沿轴向流量逐渐衰减的特点,第2组侧孔的面积设置为大于其他两组。新型结构制退器外层为胡椒瓶式套筒结构,其上设置成组分布的阵列式小面积圆孔,各组圆孔与内层侧孔周向重叠,旨在借鉴反作用式炮口制退器的特点,对火药气体进行分散和疏导,从而抑制侧向强激波的产生,实现较低的冲击波危害效益。新型制退器弹孔处为收缩式前端面,并设有分流孔,以在出口处进一步减小中央弹孔流量及火药气体在制退器出口部位的膨胀扰动。内层结构与外层结构通过布置在孔间的阵列式筋板相连,实现整体结构的一体化,便于增材制造成型。同时,结构中不存在过于复杂或与轴向夹角过大的成型曲面,满足增材制造高质量成型工艺要求。设计方案选材为3D打印钛合金粉末,材料参数[13]见表2。为评价新型炮口制退器的综合性能,以图2所示的传统冲击式炮口制退器为对比分析对象。
Structure | Backward angle/(°) | Area/mm2 |
Inner side hole 1 | 5 | 392.96 |
Inner side hole 2 | 10 | 470.34 |
Inner side hole 3 | 10 | 392.96 |
Outer side hole | 0 | 78.50 |
Front hole | 146.54 |
Material | Density/(g·cm−3) | Young’s modulus/GPa | Yield strength/MPa | Tensile strength/MPa | Poisson’s ratio |
TC4 | 4.43 | 118 | 944 | 1058 | 0.3 |
采用无黏三维Euler方程描述带制退器的膛口流场气体流动。考虑到计算目的及效率,对炮口气流进行适当简化,忽略气固两相性、多组分、化学反应以及运动弹丸的影响,将火药气体与外界大气视为理想气体,且满足气体状态方程。有限元仿真的封闭方程组为
∂U∂t+∂F∂x+∂G∂y+∂H∂z=0 |
(1) |
e=pγ−1+12ρ(u2+v2+w2) |
(2) |
pV=nRT |
(3) |
式中:e为单位质量气体的总能量,
后效期火药气体排空过程数值模拟的计算域设置为以炮口端面中心为原点、直径为3 m的球形区域,以使火药气体充分发展。计算初始时刻为弹丸飞离炮口时刻,以膛底位置为x=0,此时膛内气体沿炮轴方向任意一点的压力px、速度vx和温度Tx的初始分布状态表示为
px=pd[1+mw2ψ1mq(1−x2L2)] |
(4) |
vx=vdLx |
(5) |
Tx=pxMgρgR |
(6) |
ρg=mwVc+LS |
(7) |
式中:
图3、图4所示为新型制退器轴向和径向截面处膛口冲击波在不同时刻的压力云图,为突出显示流场发展过程,图中隐去流场超高压及部分负压区域。图5为火药气体流场充分发展时轴向和径向截面处速度矢量图。可以看出,后效期内火药气体在流入和穿出新型制退器的过程中,与内外双层结构依次产生交互作用,形成独特的流场结构与激波形貌,并构成制退效益的基础。后效期膛口冲击波的形成过程可以分为3个阶段。(1)火药气体膨胀加速进入制退器腔室后,依次流经内层侧孔和外层小孔喷出,形成侧孔冲击波,见图3(a)和图4(a)。(2)随着火药气体的向前推进和持续补充,沿炮轴方向各外层圆孔依次形成各自的侧孔冲击波,并且伴有追赶、相交和叠加过程,最终在炮口一侧合并成为一个大的冲击波。由于膨胀速率不同,在此过程中出现了后排侧孔冲击波追赶并超过前排侧孔冲击波的现象,见图3(b)和图3(c);与此同时,周向上不同角度的三维侧孔冲击波也逐渐相交合并,见图4(b)和图4(c)。(3)火药气体流出弹孔以后,在出口处形成迅速膨胀的弹孔冲击波,并与侧孔冲击波相交,形成具有各向叠加特征的典型膛口波系结构,见图3(d)、图4(d)和图5。
图6和图7为炮轴中心线、侧孔位置径向轴线处不同时刻压力分布曲线。可以看出,火药气体到达弹孔之前,不断提升新型制退器腔室内的压力水平。t=0.65 ms时,火药气体从中央弹孔流出并迅速提升当地压力,直至t=1.00 ms时弹孔处压力峰值超过制退器腔室内压力最大值,见图6(a)和图6(b)。与此同时,径向轴线方向的压力分布呈现随时间剧烈波动的高瞬态特征,见图7(a)。t=1.00 ms之后,火药气体流场逐渐衰减,腔室内外压力水平均逐渐下降(见图6(c)和图7(b)),同时径向轴线方向压力水平也呈现出规则的逐级下降趋势。
根据机载小口径航炮的实际工况,以炮口端面为中心、炮膛轴线为正方向,在0.5和1.0 m 的周向距离上,炮口区域侧向0°~150°范围内设置若干膛口流场超压监测点,如图8所示,以精确分析加装制退器后炮口区域的超压特征,评估炮口冲击波对机载平台的危害效应。得到的后效期内各点超压峰值监测结果与差值情况如表3所示。其中,超压值代表压力监测值高于环境压力的部分,加装新型制退器与传统冲击式炮口制退器情况下的超压峰值与光膛口情况下的超压峰值差值分别记为Δnew、Δimpact,负值代表产生减小超压效果,正值代表超压增大。同时,根据超压峰值,绘制了不同情况下炮口超压分布,如图9所示。
Monitor point | Overpressure peak/kPa | Δnew/kPa | Δimpact/kPa | ||
Smooth muzzle | New-structure muzzle brake | Impact muzzle brake | |||
P01 | 117.84 | 362.54 | 200.83 | 244.70 | 82.99 |
P02 | 46.31 | 65.46 | 53.20 | 19.15 | 6.89 |
P11 | 83.80 | 79.03 | 44.58 | −4.76 | −39.21 |
P12 | 28.07 | 23.61 | 19.56 | −4.46 | −8.51 |
P21 | 48.84 | 29.28 | 30.90 | −19.56 | −17.93 |
P22 | 19.76 | 11.45 | 15.40 | −8.31 | −4.36 |
P31 | 22.29 | 18.85 | 50.87 | −3.45 | 28.57 |
P32 | 10.54 | 6.99 | 15.30 | −3.55 | 4.76 |
P41 | 28.27 | 26.45 | 41.75 | −1.82 | 13.48 |
P42 | 11.55 | 9.54 | 9.73 | −2.01 | −1.82 |
P51 | 34.75 | 44.68 | 40.09 | 9.93 | 5.34 |
P52 | 15.71 | 14.79 | 13.58 | −0.91 | −2.13 |
由表3和图9可知,相比于光膛口情况,两种类型制退器的膛口冲击波超压特点可总结如下:(1)炮口正前0°方向,0.5和1.0 m两个距离上两种制退器均造成超压峰值的明显增大,并且新型制退器的增压幅度更大;(2)自炮口侧向30°方向向后,新型制退器膛口冲击波超压峰值呈U形分布,冲击型制退器呈W形分布;(3)30°~120°侧向范围内,新型制退器均产生减小超压效果,各点超压峰值降低幅度为1.82~19.56 kPa,正侧方90°处超压峰值最小,该方位0.5和1.0 m距离处分别为18.85和6.99 kPa;(4)30°~120°侧向范围内,冲击型制退器对应的超压峰值高低不等,在正侧方90°方向0.5和1.0 m距离上均形成增大超压效果,超压峰值分别为50.87和15.30 kPa;(5)150°方向0.5 m处,新型制退器对应的超压峰值略高于冲击型制退器及光膛口情况,1.0 m处同样略高于冲击型制退器但低于光膛口情况。
综上可知,新型制退器的膛口冲击波表现出高超压集中于炮口正前方、低超压集中于正侧方(炮口与机载平台直线距离最近位置处)的分布特征,同时其后侧方的整体超压水平也较好地控制在低于或近似光膛口情况,相比传统冲击型炮口制退器,对于缓解因制退器安装导致的机身及炮口装置的冲击侵害更具优势。同时应该注意到,为了追求高制退效率,新型制退器设置了较大的侧孔后倾角度及向后偏转面积,因此在炮口后侧150°方向0.5 m距离处超压出现一定的增大,说明新型制退器的结构参数仍存在改进空间,以实现高制退效率和更低冲击波危害的进一步平衡。
为分析后效期内新型制退器受载变化及制退力产生机制,沿炮膛轴线在新型炮口制退器腔室内层侧孔1~3位置及前端面侧孔处分别设置压力监测点,如图10所示。图11为后效期初期阶段各监测点压力随时间的变化曲线。图12和图13分别为后效期初期制退器受力、后效期全程火炮身管各部分受力随时间的变化曲线。
结合图11和图12可知,火药气体的流出和偏转作用不断产生对火炮身管的后坐力和向前的制退力,后效期初期制退器受力曲线呈现阶梯式上升趋势。图12中点Ⅰ~点Ⅳ处的抬升显示了当火药气体依次流经制退器内层侧孔时逐级产生的冲撞和制退效果。火药气体流出中央弹孔之前,对制退器前端面的冲击作用使制退器受力曲线继续抬升,直至达到峰值点Ⅴ,此后由于火药气体对制退器外壁面产生反向冲击作用,又使制退器的正向受力水平略降至峰值以下。
依据仿真监测结果,首先由总受力F随时间的变化曲线计算得到后效期火药气体对身管的总冲量I,再结合动量守恒定律及冲量定律,计算得到后效期起始时刻身管自由后坐速度v、后效期结束时刻身管最大后坐速度vmax以及火炮后坐动能E,进而依据定义得到制退器的效率
v=mq+0.5mwM+mw+mqvd |
(8) |
I=∫τ0Fdt=M(vmax−v) |
(9) |
E=Mv2max2 |
(10) |
η=E0−EE0×100% |
(11) |
式中:
Structure | M/kg | I/(N·s) | v/(m·s−1) | vmax/(m·s−1) | E/J | η/% |
Smooth muzzle | 7.09 | −123.68 | −47.00 | −64.45 | 14719.0 | |
New-structure muzzle brake | 8.37 | −29.40 | −40.23 | −43.74 | 8003.2 | 45.62 |
Impact muzzle brake | 8.10 | −26.15 | −41.47 | −44.70 | 8091.3 | 45.03 |
制退器与后效期火药气体相互作用过程中,其本身所承受的动态载荷作用通过流固耦合技术由流体计算结果传递至制退器各壁面,并通过瞬态动力学有限元计算方法求得变形与等效应力随时间的变化曲线,如图14和图15所示。后效期初期,高温高压的火药燃气出膛后迅速膨胀,在剧烈变化的流体压力动态载荷作用下,制退器所承受的等效应力及其变形也在短时间内迅速抬升达到峰值;约2 ms以后,随着流场的充分发展并衰减,制退器结构的应力及变形转为逐渐下降趋势。
图16和图17分别为新型制退器的等效应力和变形在其峰值时刻的分布云图。t=0.25 ms时,火药气体首先对炮口端面处的侧孔产生冲击,并在该时刻造成距离炮口端面第2排外层圆孔处出现全局最大范式等效应力,为224.37 MPa。t=1.10 ms时,火药气体已从中央弹孔流出,火药气体对制退器前端面的冲击作用使得最大变形出现在前端面与中央弹孔的结合处,约为14 μm,其他部位的变形呈现从炮口端面沿炮口正向递减趋势。由以上结果可知,后效期内制退器结构的最大应力小于钛合金材料许用应力,满足结构强度的使用要求。
提出了一种叠加冲击式内壁与反作用式外孔特征的新型小口径钛合金炮口制退器结构方案,基于膛口流场数值仿真、流固耦合技术等对其性能进行分析,并与传统冲击型炮口制退器进行对比。结果表明:新型结构方案满足小口径炮口制退器性能要求,制退效率相比传统冲击型制退器略有提高;在机载航炮应用背景下,其膛口冲击波超压分布特征及峰值水平相比传统冲击型制退器具有更好的机身与炮口装置防护优势和低冲击波危害效益,同时结构强度满足使用要求。新型结构方案对于新材料和新制造技术背景下炮口制退器的创新设计和发展具有参考意义。本研究所展示的新型制退器结构参数在高效率和更低负面危害的平衡上具有进一步改进与优化空间。研究过程中膛口流场数值模拟存在一定简化,仿真结果与实际情况存在一定偏差。另外,由于后效期膛口火药气体具有高温属性,一般借助防烧蚀涂层等技术强化钛合金装置的高温使用性能,因此未在结构强度分析中考虑热耦合效应。
[1] |
FARADAY M. Ⅶ. experimental researches in electricity: twelfth series [J]. Philosophical Transactions of the Royal Society of London, 1838, 128: 83–123. doi: 10.1098/rstl.1838.0008
|
[2] |
TUBANDT C, LORENZ E. Molekularzustand und elektrisches leitvermögen kristallisierter salze [J]. Zeitschrift für Physikalische Chemie, 1914, 87U(1): 513–542. doi: 10.1515/zpch-1914-8737
|
[3] |
DEMONTIS P, LESAR R, KLEIN M L. New high-pressure phases of ice [J]. Physical Review Letters, 1988, 60(22): 2284–2287. doi: 10.1103/PhysRevLett.60.2284
|
[4] |
MILLOT M, COPPARI F, RYGG J R, et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice [J]. Nature, 2019, 569(7755): 251–255. doi: 10.1038/s41586-019-1114-6
|
[5] |
CAVAZZONI C, CHIAROTTI G L, SCANDOLO S, et al. Superionic and metallic states of water and ammonia at giant planet conditions [J]. Science, 1999, 283(5398): 44–46. doi: 10.1126/science.283.5398.44
|
[6] |
REDMER R, MATTSSON T R, NETTELMANN N, et al. The phase diagram of water and the magnetic fields of Uranus and Neptune [J]. Icarus, 2011, 211(1): 798–803. doi: 10.1016/j.icarus.2010.08.008
|
[7] |
LIU C, GAO H, WANG Y, et al. Multiple superionic states in helium-water compounds [J]. Nature Physics, 2019, 15(10): 1065–1070. doi: 10.1038/s41567-019-0568-7
|
[8] |
KIMURA T, MURAKAMI M. Fluid-like elastic response of superionic NH3 in Uranus and Neptune [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(14): e2021810118.
|
[9] |
BINNS J, HERMANN A, PEÑA-ALVAREZ M, et al. Superionicity, disorder, and bandgap closure in dense hydrogen chloride [J]. Science Advances, 2021, 7(36): eabi9507. doi: 10.1126/sciadv.abi9507
|
[10] |
LI H F, OGANOV A R, CUI H X, et al. Ultrahigh-pressure magnesium hydrosilicates as reservoirs of water in early Earth [J]. Physical Review Letters, 2022, 128(3): 035703. doi: 10.1103/PhysRevLett.128.035703
|
[11] |
LI J W, LIN Y H, MEIER T. Silica-water superstructure and one-dimensional superionic conduit in Earth’s mantle [J]. Science Advances, 2023, 9(35): eadh3784. doi: 10.1126/sciadv.adh3784
|
[12] |
HOU M Q, HE Y, JANG B G, et al. Superionic iron oxide-hydroxide in Earth’s deep mantle [J]. Nature Geoscience, 2021, 14(3): 174–178. doi: 10.1038/s41561-021-00696-2
|
[13] |
HIROSE K, WOOD B, VOČADLO L, et al. Light elements in the Earth’s core [J]. Nature Reviews Earth & Environment, 2021, 2(9): 645–658. doi: 10.1038/s43017-021-00203-6
|
[14] |
刘锦, 吕超甲, 赵超帅. 矿物高压稳定性与深部挥发分循环过程 [J]. 矿物岩石地球化学通报, 2022, 41(2): 245–259. doi: 10.19658/j.issn.1007-2802.2022.41.011
LIU J, LYU C J, ZHAO C S. High-pressure stability of minerals and volatiles cycling in the deep Earth [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(2): 245–259. doi: 10.19658/j.issn.1007-2802.2022.41.011
|
[15] |
BIRCH F. Elasticity and constitution of the Earth’s interior [J]. Journal of Geophysical Research: Solid Earth, 1952, 57(2): 227–286. doi: 10.1029/JZ057i002p00227
|
[16] |
TATENO S, HIROSE K, OHISHI Y, et al. The structure of iron in Earth’s inner core [J]. Science, 2010, 330(6002): 359–361. doi: 10.1126/science.1194662
|
[17] |
TURNEAURE S J, SHARMA S M, GUPTA Y M. Crystal structure and melting of Fe shock compressed to 273 GPa: in situ X-ray diffraction [J]. Physical Review Letters, 2020, 125(21): 215702. doi: 10.1103/PhysRevLett.125.215702
|
[18] |
KRAUS R G, HEMLEY R J, ALI S J et al. Measuring the melting curve of iron at super-Earth core conditions [J]. Science, 2022, 375(6577): 202–205. doi: 10.1126/science.abm1472
|
[19] |
VOČADLO L, ALFÈ D, GILLAN M J, et al. Possible thermal and chemical stabilization of body-centred-cubic iron in the Earth’s core [J]. Nature, 2003, 424(6948): 536–539. doi: 10.1038/nature01829
|
[20] |
BELONOSHKO A B, AHUJA R, JOHANSSON B. Stability of the body-centred-cubic phase of iron in the Earth’s inner core [J]. Nature, 2003, 424(6952): 1032–1034. doi: 10.1038/nature01954
|
[21] |
BELONOSHKO A B, LUKINOV T, FU J, et al. Stabilization of body-centred cubic iron under inner-core conditions [J]. Nature Geoscience, 2017, 10(4): 312–316. doi: 10.1038/ngeo2892
|
[22] |
DZIEWONSKI A M, ANDERSON D L. Preliminary reference Earth model [J]. Physics of the Earth and Planetary Interiors, 1981, 25(4): 297–356. doi: 10.1016/0031-9201(81)90046-7
|
[23] |
SONG X D. Anisotropy of the Earth’s inner core [J]. Reviews of Geophysics, 1997, 35(3): 297–313. doi: 10.1029/97RG01285
|
[24] |
DEUSS A. Heterogeneity and anisotropy of Earth’s inner core [J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 103–126. doi: 10.1146/annurev-earth-060313-054658
|
[25] |
MORELLI A, DZIEWONSKI A M, WOODHOUSE J H. Anisotropy of the inner core inferred from PKIKP travel times [J]. Geophysical Research Letters, 1986, 13(13): 1545–1548. doi: 10.1029/GL013i013p01545
|
[26] |
TANAKA S, HAMAGUCHI H. Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP(BC)-PKP(DF) times [J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B2): 2925–2938. doi: 10.1029/96JB03187
|
[27] |
ISHII M, DZIEWOŃSKI A M. The innermost inner core of the Earth: evidence for a change in anisotropic behavior at the radius of about 300 km [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(22): 14026–14030. doi: 10.1073/pnas.172508499
|
[28] |
SONG X D, RICHARDS P G. Seismological evidence for differential rotation of the Earth’s inner core [J]. Nature, 1996, 382(6588): 221–224. doi: 10.1038/382221a0
|
[29] |
BADDING J V, HEMLEY R J, MAO H K, et al. High-pressure chemistry of hydrogen in metals: in situ study of iron hydride [J]. Science, 1991, 253(5018): 421–424. doi: 10.1126/science.253.5018.421
|
[30] |
PÉPIN C M, DEWAELE A, GENESTE G, et al. New iron hydrides under high pressure [J]. Physical Review Letters, 2014, 113(26): 265504. doi: 10.1103/PhysRevLett.113.265504
|
[31] |
LI Y G, VOČADLO L, SUN T, et al. The Earth’s core as a reservoir of water [J]. Nature Geoscience, 2020, 13(6): 453–458. doi: 10.1038/s41561-020-0578-1
|
[32] |
YUAN L, STEINLE-NEUMANN G. Strong sequestration of hydrogen into the Earth’s core during planetary differentiation [J]. Geophysical Research Letters, 2020, 47(15): e2020GL088303. doi: 10.1029/2020GL088303
|
[33] |
TAGAWA S, SAKAMOTO N, HIROSE K, et al. Experimental evidence for hydrogen incorporation into Earth’s core [J]. Nature Communications, 2021, 12(1): 2588. doi: 10.1038/s41467-021-22035-0
|
[34] |
HE Y, KIM D Y, STRUZHKIN V V, et al. The stability of FeH x and hydrogen transport at Earth’s core mantle boundary [J]. Science Bulletin, 2023, 68(14): 1567–1573. doi: 10.1016/j.scib.2023.06.012
|
[35] |
HE Y, SUN S C, KIM D Y, et al. Superionic iron alloys and their seismic velocities in Earth’s inner core [J]. Nature, 2022, 602(7896): 258–262. doi: 10.1038/s41586-021-04361-x
|
[36] |
SUN S C, HE Y, YANG J Y, et al. Superionic effect and anisotropic texture in Earth’s inner core driven by geomagnetic field [J]. Nature Communications, 2023, 14(1): 1656. doi: 10.1038/s41467-023-37376-1
|
[37] |
WANG W Z, LI Y G, BRODHOLT J P, et al. Strong shear softening induced by superionic hydrogen in Earth’s inner core [J]. Earth and Planetary Science Letters, 2021, 568: 117014. doi: 10.1016/j.jpgl.2021.117014
|
[38] |
YANG H, DOU P X, XIAO T T, et al. The geophysical properties of FeH x phases under inner core conditions [J]. Geophysical Research Letters, 2023, 50(22): e2023GL104493. doi: 10.1029/2023GL104493
|
[39] |
FUKAI Y, SUGIMOTO H. Diffusion of hydrogen in metals [J]. Advances in Physics, 1985, 34(2): 263–326. doi: 10.1080/00018738500101751
|
[40] |
SHIBAZAKI Y, OHTANI E, FUKUI H, et al. Sound velocity measurements in dhcp-FeH up to 70 GPa with inelastic X-ray scattering: implications for the composition of the Earth’s core [J]. Earth and Planetary Science Letters, 2012, 313/314: 79–85. doi: 10.1016/j.jpgl.2011.11.002
|
[41] |
MASHINO I, MIOZZI F, HIROSE K, et al. Melting experiments on the Fe-C binary system up to 255 GPa: constraints on the carbon content in the Earth’s core [J]. Earth and Planetary Science Letters, 2019, 515: 135–144. doi: 10.1016/j.jpgl.2019.03.020
|
[42] |
OZAWA H, HIROSE K, TATENO S, et al. Phase transition boundary between B1 and B8 structures of FeO up to 210 GPa [J]. Physics of the Earth and Planetary Interiors, 2010, 179(3/4): 157–163. doi: 10.1016/j.pepi.2009.11.005
|
[43] |
OISHI Y, KAMEI Y, AKIYAMA M, et al. Self-diffusion coefficient of lithium in lithium oxide [J]. Journal of Nuclear Materials, 1979, 87(2/3): 341–344. doi: 10.1016/0022-3115(79)90570-1
|
[44] |
KARKI B B, STIXRUDE L, CLARK S J, et al. Structure and elasticity of MgO at high pressure [J]. American Mineralogist, 1997, 82(1/2): 51–60. doi: 10.2138/am-1997-1-207
|
[45] |
KARKI B B, STIXRUDE L, WENTZCOVITCH R M. High-pressure elastic properties of major materials of Earth’s mantle from first principles [J]. Reviews of Geophysics, 2001, 39(4): 507–534. doi: 10.1029/2000RG000088
|
[46] |
VOIGT W. Lehrbuch der kristallphysik [M]. Leipzig: Teubner Verlag, 1928.
|
[47] |
REUSS A. Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung fűr einkristalle [J]. Journal of Applied Mathematics and Mechanics, 1929, 9(1): 49–58. doi: 10.1002/zamm.19290090104
|
[48] |
HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society: Section A, 1952, 65(5): 349–354.
|
[49] |
ANDERSON D L. Theory of the Earth [M]. Boston: Blackwell Scientific Publications, 1989.
|
[50] |
HULL S, FARLEY T W D, HAYES W, et al. The elastic properties of lithium oxide and their variation with temperature [J]. Journal of Nuclear Materials, 1988, 160(2/3): 125–134. doi: 10.1016/0022-3115(88)90039-6
|
[51] |
HE Y, SUN S C, LI H P. Ab initio molecular dynamics investigation of the elastic properties of superionic Li2O under high temperature and pressure [J]. Physical Review B, 2021, 103(17): 174105. doi: 10.1103/PhysRevB.103.174105
|
[52] |
MARTORELL B, VOČADLO L, BRODHOLT J, et al. Strong premelting effect in the elastic properties of hcp-Fe under inner-core conditions [J]. Science, 2013, 342(6157): 466–468. doi: 10.1126/science.1243651
|
[53] |
甘波, 李俊, 蒋刚, 等. Fe高压熔化线的实验研究进展 [J]. 高压物理学报, 2021, 35(6): 060101. doi: 10.11858/gywlxb.20210859
GAN B, LI J, JIANG G, et al. A review of the experimental determination of the melting curve of iron at ultrahigh pressures [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 060101. doi: 10.11858/gywlxb.20210859
|
[54] |
ANZELLINI S, DEWAELE A, MEZOUAR M, et al. Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction [J]. Science, 2013, 340(6131): 464–466. doi: 10.1126/science.1233514
|
[55] |
LI J, WU Q, LI J B, et al. Shock melting curve of iron: a consensus on the temperature at the Earth’s inner core boundary [J]. Geophysical Research Letters, 2020, 47(15): e2020GL087758. doi: 10.1029/2020GL087758
|
[56] |
HOU H Q, LIU J, ZHANG Y J, et al. Melting of iron explored by electrical resistance jump up to 135 GPa [J]. Geophysical Research Letters, 2021, 48(20): e2021GL095739. doi: 10.1029/2021GL095739
|
[57] |
ZHANG Y J, WANG Y, HUANG Y Q, et al. Collective motion in hcp-Fe at Earth’s inner core conditions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(41): e2309952120.
|
[58] |
BELONOSHKO A B, SIMAK S I, OLOVSSON W, et al. Elastic properties of body-centered cubic iron in Earth’s inner core [J]. Physical Review B, 2022, 105(18): L180102. doi: 10.1103/PhysRevB.105.L180102
|
[59] |
WU Z Q, WANG W Z. Shear softening of Earth’s inner core as indicated by its high Poisson ratio and elastic anisotropy [J]. Fundamental Research. DOI: 10.1016/j.fmre.2022.08.010.
|
[60] |
BELONOSHKO A B, SKORODUMOVA N V, DAVIS S, et al. Origin of the low rigidity of the Earth’s inner core [J]. Science, 2007, 316(5831): 1603–1605. doi: 10.1126/science.1141374
|
[61] |
KARATO S I. Inner core anisotropy due to the magnetic field: induced preferred orientation of iron [J]. Science, 1993, 262(5140): 1708–1711. doi: 10.1126/science.262.5140.1708
|
[62] |
YOSHIDA S, SUMITA I, KUMAZAWA M. Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy [J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B12): 28085–28103. doi: 10.1029/96JB02700
|
[63] |
FROST D A, LASBLEIS M, CHANDLER B, et al. Dynamic history of the inner core constrained by seismic anisotropy [J]. Nature Geoscience, 2021, 14(7): 531–535. doi: 10.1038/s41561-021-00761-w
|
[64] |
SINGH S C, TAYLOR M A J, MONTAGNER J P. On the presence of liquid in Earth’s inner core [J]. Science, 2000, 287(5462): 2471–2474. doi: 10.1126/science.287.5462.2471
|
[65] |
何宇, 孙士川, 徐云帆, 等. 地球内核各向异性结构成因: 矿物学模型和动力学机制 [J/OL]. 矿物岩石地球化学通报 (2023-09-28)[2024-01-09]. https://kns.cnki.net/kcms2/article/abstract?v=z5VdU6XQV3X2PXbTT1OgcuOSUGALw3UfEUzDIb8cGLjV1OFDYBL1x9lftDrN9bJg3zFaPXciDx4-jtQR4v9o1dgio2ra8UjlPAeskyFgNML5Wt6L8hM4_CvCzP0zQsJS-1kFXp9zKdE=&uniplatform=NZKPT&language=CHS. DOI: 10.19658/j.issn.1007-2802.2023.42.100.
HE Y, SUN S C, XU Y F, et al. The origin of anisotropic structure of the Earth’s inner core from mineralogical model to dynamic mechanism [J/OL]. Bulletin of Mineralogy, Petrology and Geochemistry (2023-09-28)[2024-01-09]. https://kns.cnki.net/kcms2/article/abstract?v=z5VdU6XQV3X2PXbTT1OgcuOSUGALw3UfEUzDIb8cGLjV1OFDYBL1x9lftDrN9bJg3zFaPXciDx4-jtQR4v9o1dgio2ra8UjlPAeskyFgNML5Wt6L8hM4_CvCzP0zQsJS-1kFXp9zKdE=&uniplatform=NZKPT&language=CHS. DOI: 10.19658/j.issn.1007-2802.2023.42.100.
|
[66] |
BRETT H, DEUSS A. Inner core anisotropy measured using new ultra-polar PKIKP paths [J]. Geophysical Journal International, 2020, 223(2): 1230–1246. doi: 10.1093/gji/ggaa348
|
[67] |
SUN X L, SONG X D. The inner inner core of the Earth: texturing of iron crystals from three-dimensional seismic anisotropy [J]. Earth and Planetary Science Letters, 2008, 269(1/2): 56–65. doi: 10.1016/j.jpgl.2008.01.049
|
[1] | GAO Linyu, DU Shiyu, CHANG Hui, ZHANG Tuanwei, WANG Zhihua. Strain-rate and temperature dependent compressive deformation behavior of CrCoNiSi0.3 medium-entropy alloy[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251047 |
[2] | CHEN Xiaohui, LIU Lei, ZHANG Yi, LI Shourui, JING Qiumin, GAO Junjie, LI Jun. Strain Rate-Dependent Phase Transition Behavior in Silicon[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030102. doi: 10.11858/gywlxb.20240742 |
[3] | LUORONG Dengzhu, LIU Xiaoru, YANG Jia, XIAO Likang, GUO Liang, WEI Zhantao, ZHOU Zhangyang, YI Zao, LIU Yi, FANG Leiming, XIONG Zhengwei. Tensile Behavior and Mechanical Performance Analysis of High-Strength Steels at Varying Strain Rates[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030104. doi: 10.11858/gywlxb.20240702 |
[4] | SHI Jingfu, YU Dong, XU Huadong, LIU Lei, MIAO Changqing. Strain Rate Effect of UHMWPE and Its Influence on Hypervelocity Impact Performance[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034101. doi: 10.11858/gywlxb.20220666 |
[5] | WEN Zhen, ZHANG Guoliang, JIANG Qi, LI Yongcun, GUO Zhangxin, LUAN Yunbo. Mechanical Property and De-Icing Function of Carbon Fibre-Hand-Torn Steel Composites[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054101. doi: 10.11858/gywlxb.20230661 |
[6] | YANG Zhengqing, LUAN Yunbo, ZHANG Juqi, WEN Zhen, WANG Wei, LI Mingzhen, LI Yongcun. Design and Mechanical Properties of Short Carbon Fiber Reinforced Biomimetic Materials[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044102. doi: 10.11858/gywlxb.20230639 |
[7] | HUANG Shanxiu, CHEN Xiaoyang, ZHANG Chuanxiang, GUO Jiaqi. Mechanical Properties and Energy Evolution Characteristics of Concrete under Different Strain Rates and Content of MWCNTs[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014101. doi: 10.11858/gywlxb.20220654 |
[8] | WEI Jiawei, SHI Xiaopeng, FENG Zhenyu. Strain Rate Dependent Constitutive Model of Rubber[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024205. doi: 10.11858/gywlxb.20210815 |
[9] | LEI Jingfa, XUAN Yan, LIU Tao, JIANG Xiquan, DUAN Feiya, WEI Zhan. Experiments of Dynamic Tensile Properties of a Polyvinyl Chloride Elastomer[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034101. doi: 10.11858/gywlxb.20200627 |
[10] | WANG Zihao, ZHENG Hang, WEN Heming. Determination of the Mechanical Properties of Metals at Very High Strain Rates[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024102. doi: 10.11858/gywlxb.20190794 |
[11] | ZHANG Feipeng, SHI Jiali, ZHANG Jingwen, BAO Lihong, QIN Guoqiang, ZHANG Guanglei, YANG Xinyu, ZHANG Jiuxing. Elastic and Mechanical Properties of Rare Earth Boride LaB6 Crystalline Material[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 022201. doi: 10.11858/gywlxb.20180668 |
[12] | ZHENG Jin-Yang, CUI Tian-Cheng, GU Chao-Hua, ZHANG Xin, FU Hai-Long. Effects of High Pressure Hydrogen on Mechanical Properties of 6061 Aluminum Alloy[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 505-510. doi: 10.11858/gywlxb.2017.05.001 |
[13] | WANG Jing, REN Hui-Lan, SHEN Hai-Ting, NING Jian-Guo. Effects of Strain Rate and Porosity on the Compressive Behavior of Porous Titanium with Regular Pores[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 364-372. doi: 10.11858/gywlxb.2017.00.003 |
[14] | WANG Jing, REN Hui-Lan, SHEN Hai-Ting, NING Jian-Guo. Effects of Strain Rate and Porosity on the Compressive Behavior of Porous Titanium with Regular Pores[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 364-372. doi: 10.11858/gywlxb.2017.04.003 |
[15] | MIAO Hong, ZUO Dun-Wen, ZHANG Rui-Hong. Microstructure and Mechanical Properties of Internal Thread during Cold Extrusion for Q460 High Strength Steel[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 337-342. doi: 10.11858/gywlxb.2013.03.004 |
[16] | WANG Hai-Yan, LIU Lin, CHEN Yan, ZHAO Jun, LIU Jian-Hua, ZHANG Rui-Jun. Effects of High Pressure Treatment on Micro-Mechanical Properties of 7075 Aluminum Alloy[J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 768-772. doi: 10.11858/gywlxb.2013.05.018 |
[17] | CHEN Ding-Ding, LU Fang-Yun, LIN Yu-Liang, JIANG Bang-Hai. Effects of Strain Rate and Temperature on Compressive Properties of an Aluminized PBX[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 361-366. doi: 10.11858/gywlxb.2013.03.007 |
[18] | ZHONG Wei-Zhou, SONG Shun-Cheng, XIE Ruo-Ze, HUANG Xi-Cheng. Experimental Research on Compression Mechanical Properties of Ta-10W[J]. Chinese Journal of High Pressure Physics, 2010, 24(1): 49-54 . doi: 10.11858/gywlxb.2010.01.009 |
[19] | LI Mao-Sheng, WANG Zheng-Yan, CHEN Dong-Quan, WANG Xiao-Sha. The Dependence of Constitutive Model on the Density, Temperature, Pressure and Strain Rate[J]. Chinese Journal of High Pressure Physics, 1992, 6(1): 54-57 . doi: 10.11858/gywlxb.1992.01.008 |
[20] | YU Wan-Rui. Molecular Dynamics Studies of Material Behavior at High Strain Rates[J]. Chinese Journal of High Pressure Physics, 1989, 3(2): 143-147 . doi: 10.11858/gywlxb.1989.02.006 |
Structure | Backward angle/(°) | Area/mm2 |
Inner side hole 1 | 5 | 392.96 |
Inner side hole 2 | 10 | 470.34 |
Inner side hole 3 | 10 | 392.96 |
Outer side hole | 0 | 78.50 |
Front hole | 146.54 |
Material | Density/(g·cm−3) | Young’s modulus/GPa | Yield strength/MPa | Tensile strength/MPa | Poisson’s ratio |
TC4 | 4.43 | 118 | 944 | 1058 | 0.3 |
Monitor point | Overpressure peak/kPa | Δnew/kPa | Δimpact/kPa | ||
Smooth muzzle | New-structure muzzle brake | Impact muzzle brake | |||
P01 | 117.84 | 362.54 | 200.83 | 244.70 | 82.99 |
P02 | 46.31 | 65.46 | 53.20 | 19.15 | 6.89 |
P11 | 83.80 | 79.03 | 44.58 | −4.76 | −39.21 |
P12 | 28.07 | 23.61 | 19.56 | −4.46 | −8.51 |
P21 | 48.84 | 29.28 | 30.90 | −19.56 | −17.93 |
P22 | 19.76 | 11.45 | 15.40 | −8.31 | −4.36 |
P31 | 22.29 | 18.85 | 50.87 | −3.45 | 28.57 |
P32 | 10.54 | 6.99 | 15.30 | −3.55 | 4.76 |
P41 | 28.27 | 26.45 | 41.75 | −1.82 | 13.48 |
P42 | 11.55 | 9.54 | 9.73 | −2.01 | −1.82 |
P51 | 34.75 | 44.68 | 40.09 | 9.93 | 5.34 |
P52 | 15.71 | 14.79 | 13.58 | −0.91 | −2.13 |
Structure | M/kg | I/(N·s) | v/(m·s−1) | vmax/(m·s−1) | E/J | η/% |
Smooth muzzle | 7.09 | −123.68 | −47.00 | −64.45 | 14719.0 | |
New-structure muzzle brake | 8.37 | −29.40 | −40.23 | −43.74 | 8003.2 | 45.62 |
Impact muzzle brake | 8.10 | −26.15 | −41.47 | −44.70 | 8091.3 | 45.03 |
Structure | Backward angle/(°) | Area/mm2 |
Inner side hole 1 | 5 | 392.96 |
Inner side hole 2 | 10 | 470.34 |
Inner side hole 3 | 10 | 392.96 |
Outer side hole | 0 | 78.50 |
Front hole | 146.54 |
Material | Density/(g·cm−3) | Young’s modulus/GPa | Yield strength/MPa | Tensile strength/MPa | Poisson’s ratio |
TC4 | 4.43 | 118 | 944 | 1058 | 0.3 |
Monitor point | Overpressure peak/kPa | Δnew/kPa | Δimpact/kPa | ||
Smooth muzzle | New-structure muzzle brake | Impact muzzle brake | |||
P01 | 117.84 | 362.54 | 200.83 | 244.70 | 82.99 |
P02 | 46.31 | 65.46 | 53.20 | 19.15 | 6.89 |
P11 | 83.80 | 79.03 | 44.58 | −4.76 | −39.21 |
P12 | 28.07 | 23.61 | 19.56 | −4.46 | −8.51 |
P21 | 48.84 | 29.28 | 30.90 | −19.56 | −17.93 |
P22 | 19.76 | 11.45 | 15.40 | −8.31 | −4.36 |
P31 | 22.29 | 18.85 | 50.87 | −3.45 | 28.57 |
P32 | 10.54 | 6.99 | 15.30 | −3.55 | 4.76 |
P41 | 28.27 | 26.45 | 41.75 | −1.82 | 13.48 |
P42 | 11.55 | 9.54 | 9.73 | −2.01 | −1.82 |
P51 | 34.75 | 44.68 | 40.09 | 9.93 | 5.34 |
P52 | 15.71 | 14.79 | 13.58 | −0.91 | −2.13 |
Structure | M/kg | I/(N·s) | v/(m·s−1) | vmax/(m·s−1) | E/J | η/% |
Smooth muzzle | 7.09 | −123.68 | −47.00 | −64.45 | 14719.0 | |
New-structure muzzle brake | 8.37 | −29.40 | −40.23 | −43.74 | 8003.2 | 45.62 |
Impact muzzle brake | 8.10 | −26.15 | −41.47 | −44.70 | 8091.3 | 45.03 |