Volume 38 Issue 3
Jun 2024
Turn off MathJax
Article Contents
HE Yu, SUN Shichuan, LI Heping. Superionic Iron Alloys in Earth’s Inner Core and Their Effects[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030202. doi: 10.11858/gywlxb.20240707
Citation: HE Yu, SUN Shichuan, LI Heping. Superionic Iron Alloys in Earth’s Inner Core and Their Effects[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030202. doi: 10.11858/gywlxb.20240707

Superionic Iron Alloys in Earth’s Inner Core and Their Effects

doi: 10.11858/gywlxb.20240707
  • Received Date: 09 Jan 2024
  • Rev Recd Date: 29 Feb 2024
  • Available Online: 10 May 2024
  • Issue Publish Date: 03 Jun 2024
  • Under the conditions of high temperature and high pressure, a series of materials transform into superionic states, which fall between the solid and liquid states and are widely believed to exist in the interior of Earth and exoplanets. Computational research has found that under the temperature and pressure of the Earth’s inner core, iron-hydrogen, iron-carbon, and iron-oxygen alloys transform to superionic states, manifested as elements such as hydrogen, carbon, and oxygen flowing rapidly like liquids in solid iron alloys. The flowing light elements cause softening of Fe alloys and a decrease in seismic wave velocities, explaining the characteristics of core density deficient and low shear wave velocity observed in geophysics. The superionic iron-hydrogen alloy in the core can interact with the geomagnetic field, forming a lattice preferred orientation fiber driven by a dipole geomagnetic field, explaining the origin of the anisotropic structure in the inner core. The discovery of superionic iron-light-element alloys in the inner core has updated our understanding of the state of the inner core, and is of great significance for understanding the structure, composition, and evolution of Earth’s inner core, as well as the relationship between the inner core structure and the Earth’s magnetic field.

     

  • loading
  • [1]
    FARADAY M. Ⅶ. experimental researches in electricity: twelfth series [J]. Philosophical Transactions of the Royal Society of London, 1838, 128: 83–123. doi: 10.1098/rstl.1838.0008
    [2]
    TUBANDT C, LORENZ E. Molekularzustand und elektrisches leitvermögen kristallisierter salze [J]. Zeitschrift für Physikalische Chemie, 1914, 87U(1): 513–542. doi: 10.1515/zpch-1914-8737
    [3]
    DEMONTIS P, LESAR R, KLEIN M L. New high-pressure phases of ice [J]. Physical Review Letters, 1988, 60(22): 2284–2287. doi: 10.1103/PhysRevLett.60.2284
    [4]
    MILLOT M, COPPARI F, RYGG J R, et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice [J]. Nature, 2019, 569(7755): 251–255. doi: 10.1038/s41586-019-1114-6
    [5]
    CAVAZZONI C, CHIAROTTI G L, SCANDOLO S, et al. Superionic and metallic states of water and ammonia at giant planet conditions [J]. Science, 1999, 283(5398): 44–46. doi: 10.1126/science.283.5398.44
    [6]
    REDMER R, MATTSSON T R, NETTELMANN N, et al. The phase diagram of water and the magnetic fields of Uranus and Neptune [J]. Icarus, 2011, 211(1): 798–803. doi: 10.1016/j.icarus.2010.08.008
    [7]
    LIU C, GAO H, WANG Y, et al. Multiple superionic states in helium-water compounds [J]. Nature Physics, 2019, 15(10): 1065–1070. doi: 10.1038/s41567-019-0568-7
    [8]
    KIMURA T, MURAKAMI M. Fluid-like elastic response of superionic NH3 in Uranus and Neptune [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(14): e2021810118.
    [9]
    BINNS J, HERMANN A, PEÑA-ALVAREZ M, et al. Superionicity, disorder, and bandgap closure in dense hydrogen chloride [J]. Science Advances, 2021, 7(36): eabi9507. doi: 10.1126/sciadv.abi9507
    [10]
    LI H F, OGANOV A R, CUI H X, et al. Ultrahigh-pressure magnesium hydrosilicates as reservoirs of water in early Earth [J]. Physical Review Letters, 2022, 128(3): 035703. doi: 10.1103/PhysRevLett.128.035703
    [11]
    LI J W, LIN Y H, MEIER T. Silica-water superstructure and one-dimensional superionic conduit in Earth’s mantle [J]. Science Advances, 2023, 9(35): eadh3784. doi: 10.1126/sciadv.adh3784
    [12]
    HOU M Q, HE Y, JANG B G, et al. Superionic iron oxide-hydroxide in Earth’s deep mantle [J]. Nature Geoscience, 2021, 14(3): 174–178. doi: 10.1038/s41561-021-00696-2
    [13]
    HIROSE K, WOOD B, VOČADLO L, et al. Light elements in the Earth’s core [J]. Nature Reviews Earth & Environment, 2021, 2(9): 645–658. doi: 10.1038/s43017-021-00203-6
    [14]
    刘锦, 吕超甲, 赵超帅. 矿物高压稳定性与深部挥发分循环过程 [J]. 矿物岩石地球化学通报, 2022, 41(2): 245–259. doi: 10.19658/j.issn.1007-2802.2022.41.011

    LIU J, LYU C J, ZHAO C S. High-pressure stability of minerals and volatiles cycling in the deep Earth [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(2): 245–259. doi: 10.19658/j.issn.1007-2802.2022.41.011
    [15]
    BIRCH F. Elasticity and constitution of the Earth’s interior [J]. Journal of Geophysical Research: Solid Earth, 1952, 57(2): 227–286. doi: 10.1029/JZ057i002p00227
    [16]
    TATENO S, HIROSE K, OHISHI Y, et al. The structure of iron in Earth’s inner core [J]. Science, 2010, 330(6002): 359–361. doi: 10.1126/science.1194662
    [17]
    TURNEAURE S J, SHARMA S M, GUPTA Y M. Crystal structure and melting of Fe shock compressed to 273 GPa: in situ X-ray diffraction [J]. Physical Review Letters, 2020, 125(21): 215702. doi: 10.1103/PhysRevLett.125.215702
    [18]
    KRAUS R G, HEMLEY R J, ALI S J et al. Measuring the melting curve of iron at super-Earth core conditions [J]. Science, 2022, 375(6577): 202–205. doi: 10.1126/science.abm1472
    [19]
    VOČADLO L, ALFÈ D, GILLAN M J, et al. Possible thermal and chemical stabilization of body-centred-cubic iron in the Earth’s core [J]. Nature, 2003, 424(6948): 536–539. doi: 10.1038/nature01829
    [20]
    BELONOSHKO A B, AHUJA R, JOHANSSON B. Stability of the body-centred-cubic phase of iron in the Earth’s inner core [J]. Nature, 2003, 424(6952): 1032–1034. doi: 10.1038/nature01954
    [21]
    BELONOSHKO A B, LUKINOV T, FU J, et al. Stabilization of body-centred cubic iron under inner-core conditions [J]. Nature Geoscience, 2017, 10(4): 312–316. doi: 10.1038/ngeo2892
    [22]
    DZIEWONSKI A M, ANDERSON D L. Preliminary reference Earth model [J]. Physics of the Earth and Planetary Interiors, 1981, 25(4): 297–356. doi: 10.1016/0031-9201(81)90046-7
    [23]
    SONG X D. Anisotropy of the Earth’s inner core [J]. Reviews of Geophysics, 1997, 35(3): 297–313. doi: 10.1029/97RG01285
    [24]
    DEUSS A. Heterogeneity and anisotropy of Earth’s inner core [J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 103–126. doi: 10.1146/annurev-earth-060313-054658
    [25]
    MORELLI A, DZIEWONSKI A M, WOODHOUSE J H. Anisotropy of the inner core inferred from PKIKP travel times [J]. Geophysical Research Letters, 1986, 13(13): 1545–1548. doi: 10.1029/GL013i013p01545
    [26]
    TANAKA S, HAMAGUCHI H. Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP(BC)-PKP(DF) times [J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B2): 2925–2938. doi: 10.1029/96JB03187
    [27]
    ISHII M, DZIEWOŃSKI A M. The innermost inner core of the Earth: evidence for a change in anisotropic behavior at the radius of about 300 km [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(22): 14026–14030. doi: 10.1073/pnas.172508499
    [28]
    SONG X D, RICHARDS P G. Seismological evidence for differential rotation of the Earth’s inner core [J]. Nature, 1996, 382(6588): 221–224. doi: 10.1038/382221a0
    [29]
    BADDING J V, HEMLEY R J, MAO H K, et al. High-pressure chemistry of hydrogen in metals: in situ study of iron hydride [J]. Science, 1991, 253(5018): 421–424. doi: 10.1126/science.253.5018.421
    [30]
    PÉPIN C M, DEWAELE A, GENESTE G, et al. New iron hydrides under high pressure [J]. Physical Review Letters, 2014, 113(26): 265504. doi: 10.1103/PhysRevLett.113.265504
    [31]
    LI Y G, VOČADLO L, SUN T, et al. The Earth’s core as a reservoir of water [J]. Nature Geoscience, 2020, 13(6): 453–458. doi: 10.1038/s41561-020-0578-1
    [32]
    YUAN L, STEINLE-NEUMANN G. Strong sequestration of hydrogen into the Earth’s core during planetary differentiation [J]. Geophysical Research Letters, 2020, 47(15): e2020GL088303. doi: 10.1029/2020GL088303
    [33]
    TAGAWA S, SAKAMOTO N, HIROSE K, et al. Experimental evidence for hydrogen incorporation into Earth’s core [J]. Nature Communications, 2021, 12(1): 2588. doi: 10.1038/s41467-021-22035-0
    [34]
    HE Y, KIM D Y, STRUZHKIN V V, et al. The stability of FeH x and hydrogen transport at Earth’s core mantle boundary [J]. Science Bulletin, 2023, 68(14): 1567–1573. doi: 10.1016/j.scib.2023.06.012
    [35]
    HE Y, SUN S C, KIM D Y, et al. Superionic iron alloys and their seismic velocities in Earth’s inner core [J]. Nature, 2022, 602(7896): 258–262. doi: 10.1038/s41586-021-04361-x
    [36]
    SUN S C, HE Y, YANG J Y, et al. Superionic effect and anisotropic texture in Earth’s inner core driven by geomagnetic field [J]. Nature Communications, 2023, 14(1): 1656. doi: 10.1038/s41467-023-37376-1
    [37]
    WANG W Z, LI Y G, BRODHOLT J P, et al. Strong shear softening induced by superionic hydrogen in Earth’s inner core [J]. Earth and Planetary Science Letters, 2021, 568: 117014. doi: 10.1016/j.jpgl.2021.117014
    [38]
    YANG H, DOU P X, XIAO T T, et al. The geophysical properties of FeH x phases under inner core conditions [J]. Geophysical Research Letters, 2023, 50(22): e2023GL104493. doi: 10.1029/2023GL104493
    [39]
    FUKAI Y, SUGIMOTO H. Diffusion of hydrogen in metals [J]. Advances in Physics, 1985, 34(2): 263–326. doi: 10.1080/00018738500101751
    [40]
    SHIBAZAKI Y, OHTANI E, FUKUI H, et al. Sound velocity measurements in dhcp-FeH up to 70 GPa with inelastic X-ray scattering: implications for the composition of the Earth’s core [J]. Earth and Planetary Science Letters, 2012, 313/314: 79–85. doi: 10.1016/j.jpgl.2011.11.002
    [41]
    MASHINO I, MIOZZI F, HIROSE K, et al. Melting experiments on the Fe-C binary system up to 255 GPa: constraints on the carbon content in the Earth’s core [J]. Earth and Planetary Science Letters, 2019, 515: 135–144. doi: 10.1016/j.jpgl.2019.03.020
    [42]
    OZAWA H, HIROSE K, TATENO S, et al. Phase transition boundary between B1 and B8 structures of FeO up to 210 GPa [J]. Physics of the Earth and Planetary Interiors, 2010, 179(3/4): 157–163. doi: 10.1016/j.pepi.2009.11.005
    [43]
    OISHI Y, KAMEI Y, AKIYAMA M, et al. Self-diffusion coefficient of lithium in lithium oxide [J]. Journal of Nuclear Materials, 1979, 87(2/3): 341–344. doi: 10.1016/0022-3115(79)90570-1
    [44]
    KARKI B B, STIXRUDE L, CLARK S J, et al. Structure and elasticity of MgO at high pressure [J]. American Mineralogist, 1997, 82(1/2): 51–60. doi: 10.2138/am-1997-1-207
    [45]
    KARKI B B, STIXRUDE L, WENTZCOVITCH R M. High-pressure elastic properties of major materials of Earth’s mantle from first principles [J]. Reviews of Geophysics, 2001, 39(4): 507–534. doi: 10.1029/2000RG000088
    [46]
    VOIGT W. Lehrbuch der kristallphysik [M]. Leipzig: Teubner Verlag, 1928.
    [47]
    REUSS A. Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung fűr einkristalle [J]. Journal of Applied Mathematics and Mechanics, 1929, 9(1): 49–58. doi: 10.1002/zamm.19290090104
    [48]
    HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society: Section A, 1952, 65(5): 349–354.
    [49]
    ANDERSON D L. Theory of the Earth [M]. Boston: Blackwell Scientific Publications, 1989.
    [50]
    HULL S, FARLEY T W D, HAYES W, et al. The elastic properties of lithium oxide and their variation with temperature [J]. Journal of Nuclear Materials, 1988, 160(2/3): 125–134. doi: 10.1016/0022-3115(88)90039-6
    [51]
    HE Y, SUN S C, LI H P. Ab initio molecular dynamics investigation of the elastic properties of superionic Li2O under high temperature and pressure [J]. Physical Review B, 2021, 103(17): 174105. doi: 10.1103/PhysRevB.103.174105
    [52]
    MARTORELL B, VOČADLO L, BRODHOLT J, et al. Strong premelting effect in the elastic properties of hcp-Fe under inner-core conditions [J]. Science, 2013, 342(6157): 466–468. doi: 10.1126/science.1243651
    [53]
    甘波, 李俊, 蒋刚, 等. Fe高压熔化线的实验研究进展 [J]. 高压物理学报, 2021, 35(6): 060101. doi: 10.11858/gywlxb.20210859

    GAN B, LI J, JIANG G, et al. A review of the experimental determination of the melting curve of iron at ultrahigh pressures [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 060101. doi: 10.11858/gywlxb.20210859
    [54]
    ANZELLINI S, DEWAELE A, MEZOUAR M, et al. Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction [J]. Science, 2013, 340(6131): 464–466. doi: 10.1126/science.1233514
    [55]
    LI J, WU Q, LI J B, et al. Shock melting curve of iron: a consensus on the temperature at the Earth’s inner core boundary [J]. Geophysical Research Letters, 2020, 47(15): e2020GL087758. doi: 10.1029/2020GL087758
    [56]
    HOU H Q, LIU J, ZHANG Y J, et al. Melting of iron explored by electrical resistance jump up to 135 GPa [J]. Geophysical Research Letters, 2021, 48(20): e2021GL095739. doi: 10.1029/2021GL095739
    [57]
    ZHANG Y J, WANG Y, HUANG Y Q, et al. Collective motion in hcp-Fe at Earth’s inner core conditions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(41): e2309952120.
    [58]
    BELONOSHKO A B, SIMAK S I, OLOVSSON W, et al. Elastic properties of body-centered cubic iron in Earth’s inner core [J]. Physical Review B, 2022, 105(18): L180102. doi: 10.1103/PhysRevB.105.L180102
    [59]
    WU Z Q, WANG W Z. Shear softening of Earth’s inner core as indicated by its high Poisson ratio and elastic anisotropy [J]. Fundamental Research. DOI: 10.1016/j.fmre.2022.08.010.
    [60]
    BELONOSHKO A B, SKORODUMOVA N V, DAVIS S, et al. Origin of the low rigidity of the Earth’s inner core [J]. Science, 2007, 316(5831): 1603–1605. doi: 10.1126/science.1141374
    [61]
    KARATO S I. Inner core anisotropy due to the magnetic field: induced preferred orientation of iron [J]. Science, 1993, 262(5140): 1708–1711. doi: 10.1126/science.262.5140.1708
    [62]
    YOSHIDA S, SUMITA I, KUMAZAWA M. Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy [J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B12): 28085–28103. doi: 10.1029/96JB02700
    [63]
    FROST D A, LASBLEIS M, CHANDLER B, et al. Dynamic history of the inner core constrained by seismic anisotropy [J]. Nature Geoscience, 2021, 14(7): 531–535. doi: 10.1038/s41561-021-00761-w
    [64]
    SINGH S C, TAYLOR M A J, MONTAGNER J P. On the presence of liquid in Earth’s inner core [J]. Science, 2000, 287(5462): 2471–2474. doi: 10.1126/science.287.5462.2471
    [65]
    何宇, 孙士川, 徐云帆, 等. 地球内核各向异性结构成因: 矿物学模型和动力学机制 [J/OL]. 矿物岩石地球化学通报 (2023-09-28)[2024-01-09]. https://kns.cnki.net/kcms2/article/abstract?v=z5VdU6XQV3X2PXbTT1OgcuOSUGALw3UfEUzDIb8cGLjV1OFDYBL1x9lftDrN9bJg3zFaPXciDx4-jtQR4v9o1dgio2ra8UjlPAeskyFgNML5Wt6L8hM4_CvCzP0zQsJS-1kFXp9zKdE=&uniplatform=NZKPT&language=CHS. DOI: 10.19658/j.issn.1007-2802.2023.42.100.

    HE Y, SUN S C, XU Y F, et al. The origin of anisotropic structure of the Earth’s inner core from mineralogical model to dynamic mechanism [J/OL]. Bulletin of Mineralogy, Petrology and Geochemistry (2023-09-28)[2024-01-09]. https://kns.cnki.net/kcms2/article/abstract?v=z5VdU6XQV3X2PXbTT1OgcuOSUGALw3UfEUzDIb8cGLjV1OFDYBL1x9lftDrN9bJg3zFaPXciDx4-jtQR4v9o1dgio2ra8UjlPAeskyFgNML5Wt6L8hM4_CvCzP0zQsJS-1kFXp9zKdE=&uniplatform=NZKPT&language=CHS. DOI: 10.19658/j.issn.1007-2802.2023.42.100.
    [66]
    BRETT H, DEUSS A. Inner core anisotropy measured using new ultra-polar PKIKP paths [J]. Geophysical Journal International, 2020, 223(2): 1230–1246. doi: 10.1093/gji/ggaa348
    [67]
    SUN X L, SONG X D. The inner inner core of the Earth: texturing of iron crystals from three-dimensional seismic anisotropy [J]. Earth and Planetary Science Letters, 2008, 269(1/2): 56–65. doi: 10.1016/j.jpgl.2008.01.049
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(109) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return