Citation: | LUORONG Dengzhu, LIU Xiaoru, YANG Jia, XIAO Likang, GUO Liang, WEI Zhantao, ZHOU Zhangyang, YI Zao, LIU Yi, FANG Leiming, XIONG Zhengwei. Tensile Behavior and Mechanical Performance Analysis of High-Strength Steels at Varying Strain Rates[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030104. doi: 10.11858/gywlxb.20240702 |
[1] |
JIAO Z B, LUAN J H, MILLER M K, et al. Precipitate transformation from NiAl-type to Ni2AlMn-type and its influence on the mechanical properties of high-strength steels [J]. Acta Materialia, 2016, 110: 31–43. doi: 10.1016/j.actamat.2016.03.024
|
[2] |
YAN S, LIANG T S, CHEN J Q, et al. A novel Cu-Ni added medium Mn steel: precipitation of Cu-rich particles and austenite reversed transformation occurring simultaneously during ART annealing [J]. Materials Science and Engineering: A, 2019, 746: 73–81. doi: 10.1016/j.msea.2019.01.014
|
[3] |
ZHOU B C, YANG T, ZHOU G, et al. Mechanisms for suppressing discontinuous precipitation and improving mechanical properties of NiAl-strengthened steels through nanoscale Cu partitioning [J]. Acta Materialia, 2021, 205: 116561. doi: 10.1016/j.actamat.2020.116561
|
[4] |
LIU Z B, YANG Z, WANG X H, et al. Enhanced strength-ductility synergy in a new 2.2 GPa grade ultra-high strength stainless steel with balanced fracture toughness: elucidating the role of duplex aging treatment [J]. Journal of Alloys and Compounds, 2022, 928: 167135. doi: 10.1016/j.jallcom.2022.167135
|
[5] |
WANG X, XU Y B, WANG Y, et al. Combined effect of Cu partitioning and nano-size precipitates on improving strength-ductility balance of Cu bearing Q&P steel [J]. Materials Characterization, 2022, 194: 112441. doi: 10.1016/j.matchar.2022.112441
|
[6] |
刘振宝, 梁剑雄, 杨哲, 等. 高强度不锈钢应用及研究进展 [J]. 中国冶金, 2022, 32(6): 42–53. doi: 10.13228/j.boyuan.issn1006-9356.20220264
LIU Z B, LIANG J X, YANG Z, et al. Progress of application and research on high strength stainless steel [J]. China Metallurgy, 2022, 32(6): 42–53. doi: 10.13228/j.boyuan.issn1006-9356.20220264
|
[7] |
张超, 苏杰, 梁剑雄, 等. 超高强度不锈钢沉淀行为研究进展 [J]. 钢铁, 2018, 53(4): 48–61. doi: 10.13228/j.boyuan.issn0449-749x.20170452
ZHANG C, SU J, LIANG J X, et al. Research development of precipitation behavior of ultra high strength stainless steels [J]. Iron & Steel, 2018, 53(4): 48–61. doi: 10.13228/j.boyuan.issn0449-749x.20170452
|
[8] |
吴昊. 2种合金钢动态性能与圆筒爆轰加载条件下破片特征关系研究 [D]. 北京: 北京理工大学, 2015.
WU H. Study on the relations between the dynamic properties of two alloy steels and the fragmentation characteristics of exploded cylinders [D]. Beijing: Beijing Institute of Technology, 2015.
|
[9] |
刘振宝, 梁剑雄, 苏杰, 等. 高强度不锈钢的研究及发展现状 [J]. 金属学报, 2020, 56(4): 549–557. doi: 10.11900/0412.1961.2019.00453
LIU Z B, LIANG J X, SU J, et al. Research and application progress in ultra-high strength stainless steel [J]. Acta Metallurgica Sinica, 2020, 56(4): 549–557. doi: 10.11900/0412.1961.2019.00453
|
[10] |
SEO J Y, PARK S K, KWON H, et al. Influence of carbide modifications on the mechanical properties of ultra-high-strength stainless steels [J]. Metallurgical and Materials Transactions A, 2017, 48(10): 4477–4485. doi: 10.1007/s11661-017-4220-9
|
[11] |
PIOSZAK G L, GANGLOFF R P. Hydrogen environment assisted cracking of modern ultra-high strength martensitic steels [J]. Metallurgical and Materials Transactions A, 2017, 48(9): 4025–4045. doi: 10.1007/s11661-017-4156-0
|
[12] |
YANG Z, LIU Z B, LIANG J X, et al. Elucidating the role of secondary cryogenic treatment on mechanical properties of a martensitic ultra-high strength stainless steel [J]. Materials Characterization, 2021, 178: 111277. doi: 10.1016/j.matchar.2021.111277
|
[13] |
ZHANG Y P, ZHAN D P, QI X W, et al. Effect of solid-solution temperature on the microstructure and properties of ultra-high-strength Ferrium S53® steel [J]. Materials Science and Engineering: A, 2018, 730: 41–49. doi: 10.1016/j.msea.2018.05.099
|
[14] |
苟曼曼, 白瑞敏, 孟利军. 应变速率对钛合金室温拉伸性能的影响 [J]. 湖南有色金属, 2020, 36(1): 52–54, 80. doi: 10.3969/j.issn.1003-5540.2020.01.016
GOU M M, BAI R M, MENG L J. Effect of strain rate on tensile properties of titanium alloy at room temperature [J]. Hunan Nonferrous Metals, 2020, 36(1): 52–54, 80. doi: 10.3969/j.issn.1003-5540.2020.01.016
|
[15] |
BACIU F, RUSU-CASANDRA A, PASTRAMĂ Ş D. Low strain rate testing of tensile properties of steel [J]. Materials Today: Proceedings, 2020, 32(2): 128–132. doi: 10.1016/j.matpr.2020.03.469
|
[16] |
MANJOINE M J. Influence of rate of strain and temperature on yield stresses of mild steel [J]. Journal of Applied Mechanics, 1944, 2(1): A211–A218. doi: 10.1115/1.4009394
|
[17] |
ZHANG H, LI P D, GONG X F, et al. Tensile properties, strain rate sensitivity and failure mechanism of single crystal superalloys CMSX-4 [J]. Materials Science and Engineering: A, 2020, 782: 139105. doi: 10.1016/j.msea.2020.139105
|
[18] |
OGUNDARE O D, MOMOH I M, AKINRIBIDE O J, et al. Effect of strain rates on mild steel under tensile loading [J]. International Journal of Science and Technology, 2013, 2(8): 588–594.
|
[19] |
MA X K, LI F G, CAO J, et al. Strain rate effects on tensile deformation behaviors of Ti-10V-2Fe-3Al alloy undergoing stress-induced martensitic transformation [J]. Materials Science and Engineering: A, 2018, 710: 1–9. doi: 10.1016/j.msea.2017.10.057
|
[20] |
YANG H K, ZHANG Z J, TIAN Y Z, et al. Negative to positive transition of strain rate sensitivity in Fe-22Mn-0.6C-x(Al) twinning-induced plasticity steels [J]. Materials Science and Engineering: A, 2017, 690: 146–157. doi: 10.1016/j.msea.2017.02.014
|
[21] |
QIAN L H, GUO P C, MENG J Y, et al. Unusual grain-size and strain-rate effects on the serrated flow in FeMnC twin-induced plasticity steels [J]. Journal of Materials Science, 2013, 48(4): 1669–1674. doi: 10.1007/s10853-012-6925-x
|
[22] |
MOHAPATRA S, KUMAR S, DAS S, et al. Effect of strain rate on the microstructure evolution and tensile behavior of medium manganese steel [J]. Materials Letters, 2023, 330: 133243. doi: 10.1016/j.matlet.2022.133243
|
[23] |
SHEN T, FAN C H, HU Z Y, et al. Effect of strain rate on microstructure and mechanical properties of spray-formed Al-Cu-Mg alloy [J]. Transactions of Nonferrous Metals Society of China, 2022, 32(4): 1096–1104. doi: 10.1016/S1003-6326(22)65879-5
|
[24] |
ZHONG X T, HUANG L K, LIU F. Discontinuous dynamic recrystallization mechanism and twinning evolution during hot deformation of incoloy 825 [J]. Journal of Materials Engineering and Performance, 2020, 29(9): 6155–6169. doi: 10.1007/s11665-020-05093-1
|
[25] |
ZHANG W W, YANG Y, TAN Y B, et al. Microstructure evolution and strengthening mechanisms of MP159 superalloy during room temperature rolling and cryorolling [J]. Journal of Alloys and Compounds, 2022, 908: 164667. doi: 10.1016/j.jallcom.2022.164667
|
[26] |
CAI Y Q, TAN Y B, WANG L X, et al. Multiple strengthening mechanisms induced by nanotwins and stacking faults in CoNiCr-superalloy MP159 [J]. Materials Science and Engineering: A, 2022, 853: 143793. doi: 10.1016/j.msea.2022.143793
|
[27] |
李春光, 张伟, 刘立现, 等. 不同应变速率双相高强钢动态力学行为微观机理分析 [J]. 锻压技术, 2018, 43(6): 166–171. doi: 10.13330/j.issn.1000-3940.2018.06.032
LI C G, ZHANG W, LIU L X, et al. Analysis on micro-mechanism of dynamic mechanical behavior for high-strength steel with dual-phase under different strain rates [J]. Forging & Stamping Technology, 2018, 43(6): 166–171. doi: 10.13330/j.issn.1000-3940.2018.06.032
|
[28] |
WIESNER C S, MACGILLIVRAY H. Loading rate effects on tensile properties and fracture toughness of steel [M]//HIRSCH P B. Fracture, Plastic Flow and Structural Integrity in the Nuclear Industry. London: CRC Press, 2000.
|
[29] |
ZHANG J Y, JIANG P, ZHU Z L, et al. Tensile properties and strain hardening mechanism of Cr-Mn-Si-Ni alloyed ultra-strength steel at different temperatures and strain rates [J]. Journal of Alloys and Compounds, 2020, 842: 155856. doi: 10.1016/j.jallcom.2020.155856
|
[30] |
JIANG Z H, LIAN J S, BAUDELET B. A dislocation density approximation for the flow stress-grain size relation of polycrystals [J]. Acta Metallurgica et Materialia, 1995, 43(9): 3349–3360. doi: 10.1016/0956-7151(95)00031-P
|
[31] |
孙伶俐. 拉伸应变速率对316不锈钢微观组织演变及力学性能的影响 [D]. 郑州: 郑州大学, 2018.
SUN L L. Microstructure evolution and mechanical properties of 316 stainless steel: strain rate effect [D]. Zhengzhou: Zhengzhou University, 2018.
|
[32] |
汪志福, 孔韦海. 应变速率对304奥氏体不锈钢应变硬化行为的影响 [J]. 压力容器, 2013, 30(7): 6–11. doi: 10.3969/j.issn.1001-4837.2013.07.002
WANG Z F, KONG W H. Effect of strain rate on 304 austenitic stainless steel strain hardening behavior [J]. Pressure Vessel Technology, 2013, 30(7): 6–11. doi: 10.3969/j.issn.1001-4837.2013.07.002
|
[33] |
刘海娜, 梅运东, 刘领兵. 应变速率对低合金高强钢性能的影响 [J]. 锻压技术, 2023, 48(6): 253–257. doi: 10.13330/j.issn.1000-3940.2023.06.034
LIU H N, MEI Y D, LIU L B. Influence of strain rate on properties for low alloy high strength steel [J]. Forging & Stamping Technology, 2023, 48(6): 253–257. doi: 10.13330/j.issn.1000-3940.2023.06.034
|
[34] |
胡泳. 正态分布 [J]. 商务周刊, 2009(24): 94.
HU Y. Normal distribution [J]. Business Watch Magazine, 2009(24): 94.
|
[35] |
CHEN M S, ZOU Z H, LIN Y C, et al. Microstructural evolution and grain refinement mechanisms of a Ni-based superalloy during a two-stage annealing treatment [J]. Materials Characterization, 2019, 151: 445–456. doi: 10.1016/j.matchar.2019.03.037
|
[36] |
VAN SWYGENHOVEN H. Grain boundaries and dislocations [J]. Science, 2002, 296(5565): 66–67. doi: 10.1126/science.1071040
|
[37] |
LIU Q, XIONG Z W, YANG J, et al. Deformation induced phase transition in brass under shock compression [J]. Materials Today Communications, 2023, 35: 106224. doi: 10.1016/j.mtcomm.2023.106224
|
[38] |
VALIEV R. Nanostructuring of metals by severe plastic deformation for advanced properties [J]. Nature Materials, 2004, 3(8): 511–516. doi: 10.1038/nmat1180
|
[39] |
LIU Q, FANG L M, XIONG Z W, et al. The response of dislocations, low angle grain boundaries and high angle grain boundaries at high strain rates [J]. Materials Science and Engineering: A, 2021, 822: 141704. doi: 10.1016/j.msea.2021.141704
|
[40] |
VAUGHAN M W, SAMIMI P, GIBBONS S L, et al. Exploring performance limits of a new martensitic high strength steel by ausforming via equal channel angular pressing [J]. Scripta Materialia, 2020, 184: 63–69. doi: 10.1016/j.scriptamat.2020.03.011
|
[41] |
FENG X C, LIU X Y, BAI S X, et al. Mechanical properties and deformation behaviour of TWIP steel at different strain rates [J]. Materials Science and Engineering: A, 2023, 879: 145182. doi: 10.1016/j.msea.2023.145182
|