MENG Xiangrui, LI Jianqiao, NING Jianguo, XU Xiangzhao. Numerical Simulation of Explosive Shock Wave Propagation in Imitation Bridge Structure[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042301. doi: 10.11858/gywlxb.20180649
Citation:
LUORONG Dengzhu, LIU Xiaoru, YANG Jia, XIAO Likang, GUO Liang, WEI Zhantao, ZHOU Zhangyang, YI Zao, LIU Yi, FANG Leiming, XIONG Zhengwei. Tensile Behavior and Mechanical Performance Analysis of High-Strength Steels at Varying Strain Rates[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030104. doi: 10.11858/gywlxb.20240702
MENG Xiangrui, LI Jianqiao, NING Jianguo, XU Xiangzhao. Numerical Simulation of Explosive Shock Wave Propagation in Imitation Bridge Structure[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042301. doi: 10.11858/gywlxb.20180649
Citation:
LUORONG Dengzhu, LIU Xiaoru, YANG Jia, XIAO Likang, GUO Liang, WEI Zhantao, ZHOU Zhangyang, YI Zao, LIU Yi, FANG Leiming, XIONG Zhengwei. Tensile Behavior and Mechanical Performance Analysis of High-Strength Steels at Varying Strain Rates[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030104. doi: 10.11858/gywlxb.20240702
Joint Laboratory for Extreme Conditions Matter Properties, School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
2.
Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, Sichuan, China
3.
Southwest Institute of Applied Magnetism, Mianyang 621010, Sichuan, China
4.
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, Sichuan, China
5.
Sichuan Civil-Military Integration Institute, Mianyang 621010, Sichuan, China
High-strength steels are widely employed due to their excellent combination of high strength, good ductility, and corrosion resistance. However, they often exhibit significant strain rate sensitivity. In this study, two types of high-strength steels, Ultrafort 401 and Ferrium S53 steels, were investigated. Tensile tests were conducted at varying strain rates (10−4−103 s−1), to obtain the yield strength, the tensile strength, the uniform elongation, the hardening index and other performance parameters. The variations of these parameters with strain rate were thoroughly analyzed. It was observed that under different strain rates, Ferrium S53 steel consistently outperformed Ultrafort 401 steel in terms of tensile properties, while they exhibited different trends. As the strain rate increased, both of the yield strength and the tensile strength of Ultrafort 401 steels increased, while for Ferrium S53 steels the yield strength of increased, and the tensile strength decreased and then increased. Combined with the microstructure analysis, it is found that the higher yield strength of Ferrium S53 steel was related to the smaller grain sizes, while the different tensile strength trends of the two high-strength steels with the increase of strain rate were associated with differences in strain hardening response. With the increase of strain rate, the dimple size of Ultrafort 401 steels increases, whereas it decreases and then increases for Ferrium S53 steels. This indicates a different pattern of change in the strain hardening level of the two high-strength steels with increasing strain rate. The findings in this work provide a scientific basis for assessing the mechanical performance of high-strength steels under various loading conditions and hold significant implications for their engineering applications.
JIAO Z B, LUAN J H, MILLER M K, et al. Precipitate transformation from NiAl-type to Ni2AlMn-type and its influence on the mechanical properties of high-strength steels [J]. Acta Materialia, 2016, 110: 31–43. doi: 10.1016/j.actamat.2016.03.024
[2]
YAN S, LIANG T S, CHEN J Q, et al. A novel Cu-Ni added medium Mn steel: precipitation of Cu-rich particles and austenite reversed transformation occurring simultaneously during ART annealing [J]. Materials Science and Engineering: A, 2019, 746: 73–81. doi: 10.1016/j.msea.2019.01.014
[3]
ZHOU B C, YANG T, ZHOU G, et al. Mechanisms for suppressing discontinuous precipitation and improving mechanical properties of NiAl-strengthened steels through nanoscale Cu partitioning [J]. Acta Materialia, 2021, 205: 116561. doi: 10.1016/j.actamat.2020.116561
[4]
LIU Z B, YANG Z, WANG X H, et al. Enhanced strength-ductility synergy in a new 2.2 GPa grade ultra-high strength stainless steel with balanced fracture toughness: elucidating the role of duplex aging treatment [J]. Journal of Alloys and Compounds, 2022, 928: 167135. doi: 10.1016/j.jallcom.2022.167135
[5]
WANG X, XU Y B, WANG Y, et al. Combined effect of Cu partitioning and nano-size precipitates on improving strength-ductility balance of Cu bearing Q&P steel [J]. Materials Characterization, 2022, 194: 112441. doi: 10.1016/j.matchar.2022.112441
LIU Z B, LIANG J X, YANG Z, et al. Progress of application and research on high strength stainless steel [J]. China Metallurgy, 2022, 32(6): 42–53. doi: 10.13228/j.boyuan.issn1006-9356.20220264
ZHANG C, SU J, LIANG J X, et al. Research development of precipitation behavior of ultra high strength stainless steels [J]. Iron & Steel, 2018, 53(4): 48–61. doi: 10.13228/j.boyuan.issn0449-749x.20170452
WU H. Study on the relations between the dynamic properties of two alloy steels and the fragmentation characteristics of exploded cylinders [D]. Beijing: Beijing Institute of Technology, 2015.
LIU Z B, LIANG J X, SU J, et al. Research and application progress in ultra-high strength stainless steel [J]. Acta Metallurgica Sinica, 2020, 56(4): 549–557. doi: 10.11900/0412.1961.2019.00453
[10]
SEO J Y, PARK S K, KWON H, et al. Influence of carbide modifications on the mechanical properties of ultra-high-strength stainless steels [J]. Metallurgical and Materials Transactions A, 2017, 48(10): 4477–4485. doi: 10.1007/s11661-017-4220-9
[11]
PIOSZAK G L, GANGLOFF R P. Hydrogen environment assisted cracking of modern ultra-high strength martensitic steels [J]. Metallurgical and Materials Transactions A, 2017, 48(9): 4025–4045. doi: 10.1007/s11661-017-4156-0
[12]
YANG Z, LIU Z B, LIANG J X, et al. Elucidating the role of secondary cryogenic treatment on mechanical properties of a martensitic ultra-high strength stainless steel [J]. Materials Characterization, 2021, 178: 111277. doi: 10.1016/j.matchar.2021.111277
[13]
ZHANG Y P, ZHAN D P, QI X W, et al. Effect of solid-solution temperature on the microstructure and properties of ultra-high-strength Ferrium S53® steel [J]. Materials Science and Engineering: A, 2018, 730: 41–49. doi: 10.1016/j.msea.2018.05.099
GOU M M, BAI R M, MENG L J. Effect of strain rate on tensile properties of titanium alloy at room temperature [J]. Hunan Nonferrous Metals, 2020, 36(1): 52–54, 80. doi: 10.3969/j.issn.1003-5540.2020.01.016
[15]
BACIU F, RUSU-CASANDRA A, PASTRAMĂ Ş D. Low strain rate testing of tensile properties of steel [J]. Materials Today: Proceedings, 2020, 32(2): 128–132. doi: 10.1016/j.matpr.2020.03.469
[16]
MANJOINE M J. Influence of rate of strain and temperature on yield stresses of mild steel [J]. Journal of Applied Mechanics, 1944, 2(1): A211–A218. doi: 10.1115/1.4009394
[17]
ZHANG H, LI P D, GONG X F, et al. Tensile properties, strain rate sensitivity and failure mechanism of single crystal superalloys CMSX-4 [J]. Materials Science and Engineering: A, 2020, 782: 139105. doi: 10.1016/j.msea.2020.139105
[18]
OGUNDARE O D, MOMOH I M, AKINRIBIDE O J, et al. Effect of strain rates on mild steel under tensile loading [J]. International Journal of Science and Technology, 2013, 2(8): 588–594.
[19]
MA X K, LI F G, CAO J, et al. Strain rate effects on tensile deformation behaviors of Ti-10V-2Fe-3Al alloy undergoing stress-induced martensitic transformation [J]. Materials Science and Engineering: A, 2018, 710: 1–9. doi: 10.1016/j.msea.2017.10.057
[20]
YANG H K, ZHANG Z J, TIAN Y Z, et al. Negative to positive transition of strain rate sensitivity in Fe-22Mn-0.6C-x(Al) twinning-induced plasticity steels [J]. Materials Science and Engineering: A, 2017, 690: 146–157. doi: 10.1016/j.msea.2017.02.014
[21]
QIAN L H, GUO P C, MENG J Y, et al. Unusual grain-size and strain-rate effects on the serrated flow in FeMnC twin-induced plasticity steels [J]. Journal of Materials Science, 2013, 48(4): 1669–1674. doi: 10.1007/s10853-012-6925-x
[22]
MOHAPATRA S, KUMAR S, DAS S, et al. Effect of strain rate on the microstructure evolution and tensile behavior of medium manganese steel [J]. Materials Letters, 2023, 330: 133243. doi: 10.1016/j.matlet.2022.133243
[23]
SHEN T, FAN C H, HU Z Y, et al. Effect of strain rate on microstructure and mechanical properties of spray-formed Al-Cu-Mg alloy [J]. Transactions of Nonferrous Metals Society of China, 2022, 32(4): 1096–1104. doi: 10.1016/S1003-6326(22)65879-5
[24]
ZHONG X T, HUANG L K, LIU F. Discontinuous dynamic recrystallization mechanism and twinning evolution during hot deformation of incoloy 825 [J]. Journal of Materials Engineering and Performance, 2020, 29(9): 6155–6169. doi: 10.1007/s11665-020-05093-1
[25]
ZHANG W W, YANG Y, TAN Y B, et al. Microstructure evolution and strengthening mechanisms of MP159 superalloy during room temperature rolling and cryorolling [J]. Journal of Alloys and Compounds, 2022, 908: 164667. doi: 10.1016/j.jallcom.2022.164667
[26]
CAI Y Q, TAN Y B, WANG L X, et al. Multiple strengthening mechanisms induced by nanotwins and stacking faults in CoNiCr-superalloy MP159 [J]. Materials Science and Engineering: A, 2022, 853: 143793. doi: 10.1016/j.msea.2022.143793
LI C G, ZHANG W, LIU L X, et al. Analysis on micro-mechanism of dynamic mechanical behavior for high-strength steel with dual-phase under different strain rates [J]. Forging & Stamping Technology, 2018, 43(6): 166–171. doi: 10.13330/j.issn.1000-3940.2018.06.032
[28]
WIESNER C S, MACGILLIVRAY H. Loading rate effects on tensile properties and fracture toughness of steel [M]//HIRSCH P B. Fracture, Plastic Flow and Structural Integrity in the Nuclear Industry. London: CRC Press, 2000.
[29]
ZHANG J Y, JIANG P, ZHU Z L, et al. Tensile properties and strain hardening mechanism of Cr-Mn-Si-Ni alloyed ultra-strength steel at different temperatures and strain rates [J]. Journal of Alloys and Compounds, 2020, 842: 155856. doi: 10.1016/j.jallcom.2020.155856
[30]
JIANG Z H, LIAN J S, BAUDELET B. A dislocation density approximation for the flow stress-grain size relation of polycrystals [J]. Acta Metallurgica et Materialia, 1995, 43(9): 3349–3360. doi: 10.1016/0956-7151(95)00031-P
WANG Z F, KONG W H. Effect of strain rate on 304 austenitic stainless steel strain hardening behavior [J]. Pressure Vessel Technology, 2013, 30(7): 6–11. doi: 10.3969/j.issn.1001-4837.2013.07.002
LIU H N, MEI Y D, LIU L B. Influence of strain rate on properties for low alloy high strength steel [J]. Forging & Stamping Technology, 2023, 48(6): 253–257. doi: 10.13330/j.issn.1000-3940.2023.06.034
[34]
胡泳. 正态分布 [J]. 商务周刊, 2009(24): 94.
HU Y. Normal distribution [J]. Business Watch Magazine, 2009(24): 94.
[35]
CHEN M S, ZOU Z H, LIN Y C, et al. Microstructural evolution and grain refinement mechanisms of a Ni-based superalloy during a two-stage annealing treatment [J]. Materials Characterization, 2019, 151: 445–456. doi: 10.1016/j.matchar.2019.03.037
[36]
VAN SWYGENHOVEN H. Grain boundaries and dislocations [J]. Science, 2002, 296(5565): 66–67. doi: 10.1126/science.1071040
[37]
LIU Q, XIONG Z W, YANG J, et al. Deformation induced phase transition in brass under shock compression [J]. Materials Today Communications, 2023, 35: 106224. doi: 10.1016/j.mtcomm.2023.106224
[38]
VALIEV R. Nanostructuring of metals by severe plastic deformation for advanced properties [J]. Nature Materials, 2004, 3(8): 511–516. doi: 10.1038/nmat1180
[39]
LIU Q, FANG L M, XIONG Z W, et al. The response of dislocations, low angle grain boundaries and high angle grain boundaries at high strain rates [J]. Materials Science and Engineering: A, 2021, 822: 141704. doi: 10.1016/j.msea.2021.141704
[40]
VAUGHAN M W, SAMIMI P, GIBBONS S L, et al. Exploring performance limits of a new martensitic high strength steel by ausforming via equal channel angular pressing [J]. Scripta Materialia, 2020, 184: 63–69. doi: 10.1016/j.scriptamat.2020.03.011
[41]
FENG X C, LIU X Y, BAI S X, et al. Mechanical properties and deformation behaviour of TWIP steel at different strain rates [J]. Materials Science and Engineering: A, 2023, 879: 145182. doi: 10.1016/j.msea.2023.145182
MENG Xiangrui, LI Jianqiao, NING Jianguo, XU Xiangzhao. Numerical Simulation of Explosive Shock Wave Propagation in Imitation Bridge Structure[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042301. doi: 10.11858/gywlxb.20180649
MENG Xiangrui, LI Jianqiao, NING Jianguo, XU Xiangzhao. Numerical Simulation of Explosive Shock Wave Propagation in Imitation Bridge Structure[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042301. doi: 10.11858/gywlxb.20180649
Figure 1. Schematic diagram of the specimens used for tensile tests
Figure 2. Inverse pole figure (IPF), grain boundary diagrams, the distribution of misorientation angle and grain size of Ferrium S53 and Ultrafort 401 steel samples before deformation
Figure 3. Engineering stress-strain curves at different strain rates for Ferrium S53 and Ultrafort 401 steels
Figure 4. Tensile and yield strength curves at different strain rates for Ferrium S53 and Ultrafort 401 steels
Figure 5. Uniform elongation and yield ratio curves at different strain rates for Ferrium S53 and Ultrafort 401 steels
Figure 6. Hardening indexes of Ferrium S53 and Ultrafort 401 steels at different strain rates
Figure 7. Fracture morphology and distribution of corresponding dimple size at different strain rates for Ferrium S53 steel
Figure 8. Fracture morphology and distribution of corresponding dimple size at different strain rates for Ultrafort 401 steels
Figure 9. Relationships of strength-plasticity behavior of two high-strength steels at varying strain rates (The dashed arrows show the direction of increased strain rate)