ZHANG Hongping, ZHANG Li, LUO Binqiang, LI Jianming, WANG Feng, TAN Fuli, LI Mu. High Precision Targets Fabrication for Sound Velocity Measurements in Terapascal Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033401. doi: 10.11858/gywlxb.20200524
Citation:
MA Hao, CHEN Meiduo, YUAN Liangzhu, WANG Pengfei, XU Songlin. Study on Mechanical Properties of Paper Honeycomb Structure at Medium Strain Rates[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 044104. doi: 10.11858/gywlxb.20240701
ZHANG Hongping, ZHANG Li, LUO Binqiang, LI Jianming, WANG Feng, TAN Fuli, LI Mu. High Precision Targets Fabrication for Sound Velocity Measurements in Terapascal Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033401. doi: 10.11858/gywlxb.20200524
Citation:
MA Hao, CHEN Meiduo, YUAN Liangzhu, WANG Pengfei, XU Songlin. Study on Mechanical Properties of Paper Honeycomb Structure at Medium Strain Rates[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 044104. doi: 10.11858/gywlxb.20240701
CAS Key Laboratory for Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 230027, Anhui, China
2.
The United Laboratory of High-Pressure Physics and Earthquake Science, Institute of Earthquake Science, China Earthquake Administration, Beijing 100036, China
Combining the laser interferometry system, using the newly developed experimental device at medium strain rates to conduct the dynamic loading experiment of paper honeycomb structure. The purpose is to study the mechanical properties of paper honeycomb structure at medium strain rates. The deformation process and dynamic failure mechanism of paper honeycomb structure were obtained by high-speed photography and digital image correlation method. Numerical methods were used to further explore the dynamic failure mechanism. The results show that the paper honeycomb structure exhibits obvious strain rate effect. The yield strength of 2.10 mm thick paper honeycomb is obviously lower than the other three sizes, showing abnormal size effect. The descending section of stress-strain curve of 2.10 mm thick paper honeycomb is also different. The main reason for it is that the failure mode of paper honeycomb structure changes with the increase of sample size. The failure mechanism of paper honeycomb structure during the loading process at medium strain rates is the change of two failure modes, namely from out-of-plane buckling to in-plane shear. The effect of cell width on mechanical properties of the structure was analyzed by numerical model. This study is a good reference significance for the optimal design of thin-walled structures.
对于大多数透明材料,当压力达到几百吉帕甚至太帕量级时,冲击波后的状态为流体状态(声速等价于体声速),电介质会发生绝缘体金属相变或者处于电离状态,冲击波阵面表现出很高的反射率,速度干涉仪可以直接对冲击波速度进行测量[10]。在满足一维平面冲击加载条件下,通过靶的设计引入侧向稀疏波(声波),稀疏区域压力下降,受影响区域的冲击波速度下降,冲击波面在稀疏区发生弯曲。利用线成像VISAR(Velocity interferometer system for any reflector)测量冲击波阵面速度历史已经成为冲击动力学领域的常用手段,但是线成像VISAR携带的空间分辨能力却长期被忽略[9, 11]。当线成像VISAR的物镜参数f/D较大时,测量面微小的倾斜会使探测光的回光无法进入成像透镜,导致信号丢失,所以当引入侧向稀疏时,冲击波波阵面发生弯曲,弯曲部分在VISAR像面不会有反射信号,因而可以在记录系统中测到平面冲击波和弯曲冲击波的边界随时间的横向位移。该位移数据反映了冲击波后侧向小扰动的传播过程(声速),可与冲击波速度直接关联,进而获得主冲击绝热线上的连续声速变化曲线。更为详细的原理参考文献[9]。
MIAO C H, XU S L, SONG Y P, et al. Influence of stress state on dynamic breakage of quartz glass spheres subjected to lower velocity impacting [J]. Powder Technology, 2022, 397: 117081. doi: 10.1016/j.powtec.2021.117081
[2]
CHEN M D, XU S L, YUAN L Z, et al. Influence of stress state on dynamic behaviors of concrete under true triaxial confinements [J]. International Journal of Mechanical Sciences, 2023, 253: 108399. doi: 10.1016/j.ijmecsci.2023.108399
BU L H, WANG P F, WU Y F, et al. Research on dynamic mechanical properties of two-phase composites based on convolutional neural network [J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034201. doi: 10.11858/gywlxb.20230601
XUE X, QIAO Y, WANG P F, et al. Dynamic tensile mechanical properties of carbon nanotube fiber [J]. Journal of Experimental Mechanics, 2020, 35(5): 811–819. doi: 10.7520/1001-4888-19-213
[5]
HUANG J, XU S, YI H, et al. Size effect on the compression breakage strengths of glass particles [J]. Powder Technology, 2014, 268: 86–94. doi: 10.1016/j.powtec.2014.08.037
[6]
SUN J B, FANG H. The analysis of crashworthiness and dissipation mechanism of novel floating composite honeycomb structure against ship-OWT collision [J]. Ocean Engineering, 2023, 287: 115819. doi: 10.1016/j.oceaneng.2023.115819
[7]
HOU W B, SHEN Y X, JIANG K, et al. Study on mechanical properties of carbon fiber honeycomb curved sandwich structure and its application in engine hood [J]. Composite Structures, 2022, 286: 115302. doi: 10.1016/j.compstruct.2022.115302
[8]
WANG J F, SHI C Y, YANG N, et al. Strength, stiffness, and panel peeling strength of carbon fiber-reinforced composite sandwich structures with aluminum honeycomb cores for vehicle body [J]. Composite Structures, 2018, 184: 1189–1196. doi: 10.1016/j.compstruct.2017.10.038
[9]
CLARKE D J, IMEDIEGWU C, MOAT R, et al. A systematic numerical and experimental study into the mechanical properties of five honeycombs [J]. Composites Part B: Engineering, 2023, 264: 110895. doi: 10.1016/j.compositesb.2023.110895
[10]
XU M C, ZHAO Z A, WANG P D, et al. Mechanical performance of bio-inspired hierarchical honeycomb metamaterials [J]. International Journal of Solids and Structures, 2022, 254/255: 111866. doi: 10.1016/j.ijsolstr.2022.111866
[11]
WANG Z G, LI Z D, XIONG W. Numerical study on three-point bending behavior of honeycomb sandwich with ceramic tile [J]. Composites Part B: Engineering, 2019, 167: 63–70. doi: 10.1016/j.compositesb.2018.11.108
[12]
ZHOU H, XU P, XIE S C, et al. Mechanical performance and energy absorption properties of structures combining two Nomex honeycombs [J]. Composite Structures, 2018, 185: 524–536. doi: 10.1016/j.compstruct.2017.11.059
[13]
HEIMBS S, SCHMEER S, MIDDENDORF P, et al. Strain rate effects in phenolic composites and phenolic-impregnated honeycomb structures [J]. Composites Science and Technology, 2007, 67(13): 2827–2837. doi: 10.1016/j.compscitech.2007.01.027
[14]
KAMAN M O, SOLMAZ M Y, TURAN K. Experimental and numerical analysis of critical buckling load of honeycomb sandwich panels [J]. Journal of Composite Materials, 2010, 44(24): 2819–2831. doi: 10.1177/0021998310371541
[15]
WANG D M. Impact behavior and energy absorption of paper honeycomb sandwich panels [J]. International Journal of Impact Engineering, 2009, 36(1): 110–114. doi: 10.1016/j.ijimpeng.2008.03.002
[16]
LIU L Q, WANG H, GUAN Z W. Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading [J]. Composite Structures, 2015, 121: 304–314. doi: 10.1016/j.compstruct.2014.11.034
[17]
YANG W C, ZHANG X F, YANG K J, et al. Shear property characterization of aramid paper and its application to the prediction of honeycomb behaviors [J]. Composite Structures, 2020, 254: 112800. doi: 10.1016/j.compstruct.2020.112800
[18]
JANG W Y, KYRIAKIDES S. On the buckling and crushing of expanded honeycomb [J]. International Journal of Mechanical Sciences, 2015, 91: 81–90. doi: 10.1016/j.ijmecsci.2014.02.008
[19]
SHAN J F, XU S L, ZHOU L J, et al. Dynamic fracture of aramid paper honeycomb subjected to impact loading [J]. Composite Structures, 2019, 223: 110962. doi: 10.1016/j.compstruct.2019.110962
[20]
PETRAS A, SUTCLIFFE M P F. Failure mode maps for honeycomb sandwich panels [J]. Composite Structures, 1999, 44(4): 237–252. doi: 10.1016/S0263-8223(98)00123-8
[21]
CASTANIÉ B, BOUVET C, AMINANDA Y, et al. Modelling of low-energy/low-velocity impact on Nomex honeycomb sandwich structures with metallic skins [J]. International Journal of Impact Engineering, 2008, 35(7): 620–634. doi: 10.1016/j.ijimpeng.2007.02.008
[22]
WU X R, YU H J, GUO L C, et al. Experimental and numerical investigation of static and fatigue behaviors of composites honeycomb sandwich structure [J]. Composite Structures, 2019, 213: 165–172. doi: 10.1016/j.compstruct.2019.01.081
MIAO C H, XU S L, MA H, et al. An experimental technique for medium strain-rate loading by a progressive cam [J]. Explosion and Shock Waves, 2023, 43(3): 034101. doi: 10.11883/bzycj-2022-0344
[24]
KESHAVANARAYANA S, THOTAKURI M V. Off-axis compression behaviour of honeycomb core in WT-plane [J]. International Journal of Crashworthiness, 2009, 14(2): 173–181. doi: 10.1080/13588260802614373
XU X C. Preparation and mechanical properties of GFRP/paper honeycomb composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.
[26]
KADIR N A, AMINANDA Y, DAWOOD M S I S, et al. Numerical analysis of kraft paper honeycomb subjected to uniform compression loading [J]. Journal of Physics: Conference Series, 2017, 914: 012004. doi: 10.1088/1742-6596/914/1/012004
[27]
KILCHERT S V. Nonlinear finite element modelling of degradation and failure in folded core composite sandwich structures [D]. Stuttgart: University of Stuttgart, 2013.
[28]
ZHANG J, ASHBY M F. The out-of-plane properties of honeycombs [J]. International Journal of Mechanical Sciences, 1992, 34(6): 475–489. doi: 10.1016/0020-7403(92)90013-7
ZHANG Hongping, ZHANG Li, LUO Binqiang, LI Jianming, WANG Feng, TAN Fuli, LI Mu. High Precision Targets Fabrication for Sound Velocity Measurements in Terapascal Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033401. doi: 10.11858/gywlxb.20200524
ZHANG Hongping, ZHANG Li, LUO Binqiang, LI Jianming, WANG Feng, TAN Fuli, LI Mu. High Precision Targets Fabrication for Sound Velocity Measurements in Terapascal Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033401. doi: 10.11858/gywlxb.20200524