Volume 38 Issue 4
Jul 2024
Turn off MathJax
Article Contents
MA Hao, CHEN Meiduo, YUAN Liangzhu, WANG Pengfei, XU Songlin. Study on Mechanical Properties of Paper Honeycomb Structure at Medium Strain Rates[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 044104. doi: 10.11858/gywlxb.20240701
Citation: MA Hao, CHEN Meiduo, YUAN Liangzhu, WANG Pengfei, XU Songlin. Study on Mechanical Properties of Paper Honeycomb Structure at Medium Strain Rates[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 044104. doi: 10.11858/gywlxb.20240701

Study on Mechanical Properties of Paper Honeycomb Structure at Medium Strain Rates

doi: 10.11858/gywlxb.20240701
  • Received Date: 02 Jan 2024
  • Rev Recd Date: 13 Jan 2024
  • Issue Publish Date: 25 Jul 2024
  • Combining the laser interferometry system, using the newly developed experimental device at medium strain rates to conduct the dynamic loading experiment of paper honeycomb structure. The purpose is to study the mechanical properties of paper honeycomb structure at medium strain rates. The deformation process and dynamic failure mechanism of paper honeycomb structure were obtained by high-speed photography and digital image correlation method. Numerical methods were used to further explore the dynamic failure mechanism. The results show that the paper honeycomb structure exhibits obvious strain rate effect. The yield strength of 2.10 mm thick paper honeycomb is obviously lower than the other three sizes, showing abnormal size effect. The descending section of stress-strain curve of 2.10 mm thick paper honeycomb is also different. The main reason for it is that the failure mode of paper honeycomb structure changes with the increase of sample size. The failure mechanism of paper honeycomb structure during the loading process at medium strain rates is the change of two failure modes, namely from out-of-plane buckling to in-plane shear. The effect of cell width on mechanical properties of the structure was analyzed by numerical model. This study is a good reference significance for the optimal design of thin-walled structures.

     

  • loading
  • [1]
    MIAO C H, XU S L, SONG Y P, et al. Influence of stress state on dynamic breakage of quartz glass spheres subjected to lower velocity impacting [J]. Powder Technology, 2022, 397: 117081. doi: 10.1016/j.powtec.2021.117081
    [2]
    CHEN M D, XU S L, YUAN L Z, et al. Influence of stress state on dynamic behaviors of concrete under true triaxial confinements [J]. International Journal of Mechanical Sciences, 2023, 253: 108399. doi: 10.1016/j.ijmecsci.2023.108399
    [3]
    卜乐虎, 王鹏飞, 武杨帆, 等. 基于卷积神经网络的两相复合结构动态力学性能研究 [J]. 高压物理学报, 2023, 37(3): 034201. doi: 10.11858/gywlxb.20230601

    BU L H, WANG P F, WU Y F, et al. Research on dynamic mechanical properties of two-phase composites based on convolutional neural network [J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034201. doi: 10.11858/gywlxb.20230601
    [4]
    薛晓, 乔禹, 王鹏飞, 等. 碳纳米管纤维的动态拉伸力学性能研究 [J]. 实验力学, 2020, 35(5): 811–819. doi: 10.7520/1001-4888-19-213

    XUE X, QIAO Y, WANG P F, et al. Dynamic tensile mechanical properties of carbon nanotube fiber [J]. Journal of Experimental Mechanics, 2020, 35(5): 811–819. doi: 10.7520/1001-4888-19-213
    [5]
    HUANG J, XU S, YI H, et al. Size effect on the compression breakage strengths of glass particles [J]. Powder Technology, 2014, 268: 86–94. doi: 10.1016/j.powtec.2014.08.037
    [6]
    SUN J B, FANG H. The analysis of crashworthiness and dissipation mechanism of novel floating composite honeycomb structure against ship-OWT collision [J]. Ocean Engineering, 2023, 287: 115819. doi: 10.1016/j.oceaneng.2023.115819
    [7]
    HOU W B, SHEN Y X, JIANG K, et al. Study on mechanical properties of carbon fiber honeycomb curved sandwich structure and its application in engine hood [J]. Composite Structures, 2022, 286: 115302. doi: 10.1016/j.compstruct.2022.115302
    [8]
    WANG J F, SHI C Y, YANG N, et al. Strength, stiffness, and panel peeling strength of carbon fiber-reinforced composite sandwich structures with aluminum honeycomb cores for vehicle body [J]. Composite Structures, 2018, 184: 1189–1196. doi: 10.1016/j.compstruct.2017.10.038
    [9]
    CLARKE D J, IMEDIEGWU C, MOAT R, et al. A systematic numerical and experimental study into the mechanical properties of five honeycombs [J]. Composites Part B: Engineering, 2023, 264: 110895. doi: 10.1016/j.compositesb.2023.110895
    [10]
    XU M C, ZHAO Z A, WANG P D, et al. Mechanical performance of bio-inspired hierarchical honeycomb metamaterials [J]. International Journal of Solids and Structures, 2022, 254/255: 111866. doi: 10.1016/j.ijsolstr.2022.111866
    [11]
    WANG Z G, LI Z D, XIONG W. Numerical study on three-point bending behavior of honeycomb sandwich with ceramic tile [J]. Composites Part B: Engineering, 2019, 167: 63–70. doi: 10.1016/j.compositesb.2018.11.108
    [12]
    ZHOU H, XU P, XIE S C, et al. Mechanical performance and energy absorption properties of structures combining two Nomex honeycombs [J]. Composite Structures, 2018, 185: 524–536. doi: 10.1016/j.compstruct.2017.11.059
    [13]
    HEIMBS S, SCHMEER S, MIDDENDORF P, et al. Strain rate effects in phenolic composites and phenolic-impregnated honeycomb structures [J]. Composites Science and Technology, 2007, 67(13): 2827–2837. doi: 10.1016/j.compscitech.2007.01.027
    [14]
    KAMAN M O, SOLMAZ M Y, TURAN K. Experimental and numerical analysis of critical buckling load of honeycomb sandwich panels [J]. Journal of Composite Materials, 2010, 44(24): 2819–2831. doi: 10.1177/0021998310371541
    [15]
    WANG D M. Impact behavior and energy absorption of paper honeycomb sandwich panels [J]. International Journal of Impact Engineering, 2009, 36(1): 110–114. doi: 10.1016/j.ijimpeng.2008.03.002
    [16]
    LIU L Q, WANG H, GUAN Z W. Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading [J]. Composite Structures, 2015, 121: 304–314. doi: 10.1016/j.compstruct.2014.11.034
    [17]
    YANG W C, ZHANG X F, YANG K J, et al. Shear property characterization of aramid paper and its application to the prediction of honeycomb behaviors [J]. Composite Structures, 2020, 254: 112800. doi: 10.1016/j.compstruct.2020.112800
    [18]
    JANG W Y, KYRIAKIDES S. On the buckling and crushing of expanded honeycomb [J]. International Journal of Mechanical Sciences, 2015, 91: 81–90. doi: 10.1016/j.ijmecsci.2014.02.008
    [19]
    SHAN J F, XU S L, ZHOU L J, et al. Dynamic fracture of aramid paper honeycomb subjected to impact loading [J]. Composite Structures, 2019, 223: 110962. doi: 10.1016/j.compstruct.2019.110962
    [20]
    PETRAS A, SUTCLIFFE M P F. Failure mode maps for honeycomb sandwich panels [J]. Composite Structures, 1999, 44(4): 237–252. doi: 10.1016/S0263-8223(98)00123-8
    [21]
    CASTANIÉ B, BOUVET C, AMINANDA Y, et al. Modelling of low-energy/low-velocity impact on Nomex honeycomb sandwich structures with metallic skins [J]. International Journal of Impact Engineering, 2008, 35(7): 620–634. doi: 10.1016/j.ijimpeng.2007.02.008
    [22]
    WU X R, YU H J, GUO L C, et al. Experimental and numerical investigation of static and fatigue behaviors of composites honeycomb sandwich structure [J]. Composite Structures, 2019, 213: 165–172. doi: 10.1016/j.compstruct.2019.01.081
    [23]
    苗春贺, 徐松林, 马昊, 等. 递进式凸轮加载的中等应变率实验技术 [J]. 爆炸与冲击, 2023, 43(3): 034101. doi: 10.11883/bzycj-2022-0344

    MIAO C H, XU S L, MA H, et al. An experimental technique for medium strain-rate loading by a progressive cam [J]. Explosion and Shock Waves, 2023, 43(3): 034101. doi: 10.11883/bzycj-2022-0344
    [24]
    KESHAVANARAYANA S, THOTAKURI M V. Off-axis compression behaviour of honeycomb core in WT-plane [J]. International Journal of Crashworthiness, 2009, 14(2): 173–181. doi: 10.1080/13588260802614373
    [25]
    徐小村. GFRP/纸蜂窝复合材料的制备及力学性能研究 [D]. 南京: 南京航空航天大学, 2020.

    XU X C. Preparation and mechanical properties of GFRP/paper honeycomb composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.
    [26]
    KADIR N A, AMINANDA Y, DAWOOD M S I S, et al. Numerical analysis of kraft paper honeycomb subjected to uniform compression loading [J]. Journal of Physics: Conference Series, 2017, 914: 012004. doi: 10.1088/1742-6596/914/1/012004
    [27]
    KILCHERT S V. Nonlinear finite element modelling of degradation and failure in folded core composite sandwich structures [D]. Stuttgart: University of Stuttgart, 2013.
    [28]
    ZHANG J, ASHBY M F. The out-of-plane properties of honeycombs [J]. International Journal of Mechanical Sciences, 1992, 34(6): 475–489. doi: 10.1016/0020-7403(92)90013-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(114) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return