Citation: | WANG Xiancheng, ZHANG Jun, JIN Changqing. The Experimental Progress on Binary Polyhydrides with High Temperature Superconductivity[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020101. doi: 10.11858/gywlxb.20230843 |
[1] |
WIGNER E, HUNTINGTON H B. On the possibility of a metallic modification of hydrogen [J]. The Journal of Chemical Physics, 1935, 3(12): 764–770. doi: 10.1063/1.1749590
|
[2] |
JOHNSON K A, ASHCROFT N W. Structure and bandgap closure in dense hydrogen [J]. Nature, 2000, 403(6770): 632–635. doi: 10.1038/35001024
|
[3] |
STÄDELE M, MARTIN R M. Metallization of molecular hydrogen: predictions from exact-exchange calculations [J]. Physical Review Letters, 2000, 84(26): 6070–6073. doi: 10.1103/PhysRevLett.84.6070
|
[4] |
ASHCROFT N W. Metallic hydrogen: a high-temperature superconductor? [J]. Physical Review Letters, 1968, 21(26): 1748–1749. doi: 10.1103/PhysRevLett.21.1748
|
[5] |
徐济安, 朱宰万. 金属氢 [J]. 物理, 1977, 6(5): 296–300.
|
[6] |
ASHCROFT N W. Hydrogen dominant metallic alloys: high temperature superconductors? [J]. Physical Review Letters, 2004, 92(18): 187002. doi: 10.1103/PhysRevLett.92.187002
|
[7] |
LI Y W, HAO J, LIU H Y, et al. The metallization and superconductivity of dense hydrogen sulfide [J]. The Journal of Chemical Physics, 2014, 140(17): 174712. doi: 10.1063/1.4874158
|
[8] |
DUAN D F, LIU Y X, TIAN F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high- Tc superconductivity [J]. Scientific Reports, 2014, 4(1): 6968. doi: 10.1038/srep06968
|
[9] |
FLORES-LIVAS J A, BOERI L, SANNA A, et al. A perspective on conventional high-temperature superconductors at high pressure: methods and materials [J]. Physics Reports, 2020, 856: 1–78. doi: 10.1016/j.physrep.2020.02.003
|
[10] |
SEMENOK D V, KRUGLOV I A, SAVKIN I A, et al. On distribution of superconductivity in metal hydrides [J]. Current Opinion in Solid State and Materials Science, 2020, 24(2): 100808. doi: 10.1016/j.cossms.2020.100808
|
[11] |
DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964
|
[12] |
DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
|
[13] |
SOMAYAZULU M, AHART M, MISHRA A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at Megabar pressures [J]. Physical Review Letters, 2019, 122(2): 027001. doi: 10.1103/PhysRevLett.122.027001
|
[14] |
HONG F, YANG L X, SHAN P F, et al. Superconductivity of lanthanum superhydride investigated using the standard four-probe configuration under high pressures [J]. Chinese Physics Letters, 2020, 37(10): 107401. doi: 10.1088/0256-307X/37/10/107401
|
[15] |
KONG P P, MINKOV V S, KUZOVNIKOV M A, et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure [J]. Nature Communications, 2021, 12(1): 5075. doi: 10.1038/s41467-021-25372-2
|
[16] |
LI Z W, HE X, ZHANG C L, et al. Superconductivity above 200 K discovered in superhydrides of calcium [J]. Nature Communications, 2022, 13(1): 2863. doi: 10.1038/s41467-022-30454-w
|
[17] |
MA L, WANG K, XIE Y, et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa [J]. Physical Review Letters, 2022, 128(16): 167001. doi: 10.1103/PhysRevLett.128.167001
|
[18] |
SUN Y, ZHONG X, LIU H Y, et al. Clathrate metal superhydrides at high-pressure conditions: enroute to room-temperature superconductivity [J]. National Science Review, 2023: nwad270.
|
[19] |
LU K, HE X, ZHANG C L, et al. Superconductivity with Tc 116 K discovered in antimony polyhydrides [J]. National Science Review, 2023: nwad241.
|
[20] |
HE X, ZHANG C L, LI Z W, et al. Superconductivity discovered in niobium polyhydride at high pressures [J]. Materials Today Physics, 2024, 40: 101298. doi: 10.1016/j.mtphys.2023.101298
|
[21] |
PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001
|
[22] |
WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466. doi: 10.1073/pnas.1118168109
|
[23] |
靳常青, 邓正, 望贤成. 迈向室温的超导新材料及可能的应用前景 [M]. 北京: 科学出版社, 2021.
|
[24] |
SALKE N P, DAVARI ESFAHANI M M, ZHANG Y J, et al. Synthesis of clathrate cerium superhydride CeH9 at 80–100 GPa with atomic hydrogen sublattice [J]. Nature Communications, 2019, 10(1): 4453. doi: 10.1038/s41467-019-12326-y
|
[25] |
ZHOU D, SEMENOK D V, DUAN D F, et al. Superconducting praseodymium superhydrides [J]. Science Advances, 2020, 6(9): eaax6849. doi: 10.1126/sciadv.aax6849
|
[26] |
ZHOU D, SEMENOK D V, XIE H, et al. High-pressure synthesis of magnetic neodymium polyhydrides [J]. Journal of the American Chemical Society, 2020, 142(6): 2803–2811. doi: 10.1021/jacs.9b10439
|
[27] |
LI Z W, HE X, ZHANG C L, et al. Superconductivity above 70 K observed in lutetium polyhydrides [J]. Science China Physics, Mechanics & Astronomy, 2023, 66(6): 267411.
|
[28] |
SEMENOK D V, ZHOU D, KVASHNIN A G, et al. Novel strongly correlated europium superhydrides [J]. The Journal of Physical Chemistry Letters, 2021, 12(1): 32–40. doi: 10.1021/acs.jpclett.0c03331
|
[29] |
HONG F, SHAN P F, YANG L X, et al. Possible superconductivity at ~70K in tin hydride SnH x under high pressure [J]. Materials Today Physics, 2022, 22: 100596. doi: 10.1016/j.mtphys.2021.100596
|
[30] |
DROZDOV A P, EREMETS M I, TROYAN I A. Superconductivity above 100 K in PH3 at high pressures [EB/OL]. arXiv: 1508.06224. https://arxiv.org/abs/1508.06224.
|
[31] |
MA Y B, DUAN D F, LI D, et al. The unexpected binding and superconductivity in SbH4 at high pressure [EB/OL]. arXiv: 1506.03889. https://arxiv.org/abs/1506.03889.
|
[32] |
FU Y H, DU X P, ZHANG L J, et al. High-pressure phase stability and superconductivity of pnictogen hydrides and chemical trends for compressed hydrides [J]. Chemistry of Materials, 2016, 28(6): 1746–1755. doi: 10.1021/acs.chemmater.5b04638
|
[33] |
ZHANG C L, HE X, LI Z W, et al. Superconductivity in zirconium polyhydrides with Tc above 70 K [J]. Science Bulletin, 2022, 67(9): 907–909. doi: 10.1016/j.scib.2022.03.001
|
[34] |
ZHANG C L, HE X, LI Z W, et al. Superconductivity above 80 K in polyhydrides of hafnium [J]. Materials Today Physics, 2022, 27: 100826. doi: 10.1016/j.mtphys.2022.100826
|
[35] |
HE X, ZHANG C L, LI Z W, et al. Superconductivity observed in tantalum polyhydride at high pressure [J]. Chinese Physics Letters, 2023, 40(5): 057404. doi: 10.1088/0256-307X/40/5/057404
|
[36] |
DI CATALDO S, HEIL C, VON DER LINDEN W, et al. LaBH8: towards high- Tc low-pressure superconductivity in ternary superhydrides [J]. Physical Review B, 2021, 104(2): L020511. doi: 10.1103/PhysRevB.104.L020511
|
[37] |
SONG Y G, BI J K, NAKAMOTO Y, et al. Stoichiometric ternary superhydride LaBeH8 as a new template for high-temperature superconductivity at 110 K under 80 GPa [J]. Physical Review Letters, 2023, 130(26): 266001. doi: 10.1103/PhysRevLett.130.266001
|
[38] |
DI CATALDO S, QULAGHASI S, BACHELET G B, et al. High- Tc superconductivity in doped boron-carbon clathrates [J]. Physical Review B, 2022, 105(6): 064516. doi: 10.1103/PhysRevB.105.064516
|