Citation: | CHEN Yinqi, WANG Hongbo. Hydrogen-Rich Superconductors with High Critical Temperature under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020103. doi: 10.11858/gywlxb.20230842 |
[1] |
ONNES H K. The resistance of pure mercury at helium temperatures [J]. Communications Physics Laboratory Leiden University, 1911: 122b-124c.
|
[2] |
TESTARDI L R, WERNICK J H, ROYER W A. Superconductivity with onset above 23 °K in Nb-Ge sputtered films [J]. Solid State Communications, 1974, 15(1): 1–4. doi: 10.1016/0038-1098(74)90002-7
|
[3] |
BEDNORZ J G, MÜELLER K A. Possible high Tc superconductivity in the Ba-La-Cu-O system [J]. Zeitschrift für Physik B Condensed Matter, 1986, 64(2): 189–193. doi: 10.1007/BF01303701
|
[4] |
赵忠贤, 陈立泉, 杨乾声, 等. Ba-Y-Cu氧化物液氮温区的超导电性 [J]. 科学通报, 1987, 32(6): 412–414. doi: 10.1360/csb1987-32-6-412
|
[5] |
WU M K, ASHBURN J R, TORNG C J, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure [J]. Physical Review Letters, 1987, 58(9): 908–910. doi: 10.1103/PhysRevLett.58.908
|
[6] |
WU G, XIE Y L, CHEN H, et al. Superconductivity at 56 K in samarium-doped SrFeAsF [J]. Journal of Physics: Condensed Matter, 2009, 21(14): 142203. doi: 10.1088/0953-8984/21/14/142203
|
[7] |
GAO L, XUE Y Y, CHEN F, et al. Superconductivity up to 164 K in HgBa2Ca m −1Cu m O2 m +2+ δ ( m = 1, 2, and 3) under quasihydrostatic pressures [J]. Physical Review B, 1994, 50(6): 4260–4263. doi: 10.1103/PhysRevB.50.4260
|
[8] |
BARDEEN J, COOPER L N, SCHRIEFFER J R. Microscopic theory of superconductivity [J]. Physical Review, 1957, 106(1): 162–164. doi: 10.1103/PhysRev.106.162
|
[9] |
WIGNER E, HUNTINGTON H B. On the possibility of a metallic modification of hydrogen [J]. The Journal of Chemical Physics, 1935, 3(12): 764–770. doi: 10.1063/1.1749590
|
[10] |
ASHCROFT N W. Metallic hydrogen: a high-temperature superconductor? [J]. Physical Review Letters, 1968, 21(26): 1748–1749. doi: 10.1103/PhysRevLett.21.1748
|
[11] |
BARBEE T W III, GARCÍA A, COHEN M L. First-principles prediction of high-temperature superconductivity in metallic hydrogen [J]. Nature, 1989, 340(6232): 369–371. doi: 10.1038/340369a0
|
[12] |
PICKARD C J, NEEDS R J. Structure of phase Ⅲ of solid hydrogen [J]. Nature Physics, 2007, 3(7): 473–476. doi: 10.1038/nphys625
|
[13] |
MCMAHON J M, CEPERLEY D M. High-temperature superconductivity in atomic metallic hydrogen [J]. Physical Review B, 2011, 84(14): 144515. doi: 10.1103/PhysRevB.84.144515
|
[14] |
DIAS R, NOKED O, SILVERA I F. New low temperature phase in dense hydrogen: the phase diagram to 421 GPa [EB/OL]. arXiv: 1603.02162. (2016-05-26) [2023-10-30]. https://arxiv.org/abs/1603.02162.
|
[15] |
EREMETS M I, DROZDOV A P, KONG P P, et al. Semimetallic molecular hydrogen at pressure above 350 GPa [J]. Nature Physics, 2019, 15(12): 1246–1249. doi: 10.1038/s41567-019-0646-x
|
[16] |
LOUBEYRE P, OCCELLI F, DUMAS P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen [J]. Nature, 2020, 577(7792): 631–635. doi: 10.1038/s41586-019-1927-3
|
[17] |
SATTERTHWAITE C B, TOEPKE I L. Superconductivity of hydrides and deuterides of thorium [J]. Physical Review Letters, 1970, 25(11): 741–743. doi: 10.1103/PhysRevLett.25.741
|
[18] |
GILMAN J J. Lithium dihydrogen fluoride—an approach to metallic hydrogen [J]. Physical Review Letters, 1971, 26(10): 546–548. doi: 10.1103/PhysRevLett.26.546
|
[19] |
ASHCROFT N W. Hydrogen dominant metallic alloys: high temperature superconductors? [J]. Physical Review Letters, 2004, 92(18): 187002. doi: 10.1103/PhysRevLett.92.187002
|
[20] |
SKOSKIEWICZ T. Superconductivity in the palladium-hydrogen and palladium-nickel-hydrogen systems [J]. Physica Status Solidi (A), 1972, 11(2): K123–K126. doi: 10.1002/pssa.2210110253
|
[21] |
BUCKEL W, STRITZKER B. Superconductivity of palladium and Pd-alloys charged with H or D by ion implantation at helium temperatures [M]//PICRAUX S T, EERNISSE E P, VOOK F L. Applications of Ion Beams to Metals. Boston: Springer, 1974: 3−13.
|
[22] |
WELTER J M, JOHNEN F J. Superconducting transition temperature and low temperature resistivity in the niobium-hydrogen system [J]. Zeitschrift für Physik B Condensed Matter, 1977, 27(3): 227–232. doi: 10.1007/BF01325532
|
[23] |
FENG J, GROCHALA W, JAROŃ T, et al. Structures and potential superconductivity in SiH4 at high pressure: en route to “Metallic Hydrogen” [J]. Physical Review Letters, 2006, 96(1): 017006. doi: 10.1103/PhysRevLett.96.017006
|
[24] |
MARTINEZ-CANALES M, BERGARA A, FENG J, et al. Pressure induced metallization of germane [J]. Journal of Physics and Chemistry of Solids, 2006, 67(9/10): 2095–2099. doi: 10.1016/j.jpcs.2006.05.050
|
[25] |
TSE J S, YAO Y, TANAKA K. Novel superconductivity in metallic SnH4 under high pressure [J]. Physical Review Letters, 2007, 98(11): 117004. doi: 10.1103/PhysRevLett.98.117004
|
[26] |
GAO G Y, WANG H, BERGARA A, et al. Metallic and superconducting gallane under high pressure [J]. Physical Review B, 2011, 84(6): 064118. doi: 10.1103/PhysRevB.84.064118
|
[27] |
ZHANG L J, WANG Y C, ZHANG X X, et al. High-pressure phase transitions of solid HF, HCl, and HBr: an ab initio evolutionary study [J]. Physical Review B, 2010, 82(1): 014108. doi: 10.1103/PhysRevB.82.014108
|
[28] |
GU Q Y, LU P C, XIA K, et al. High-temperature superconducting phase of HBr under pressure predicted by first-principles calculations [J]. Physical Review B, 2017, 96(6): 064517. doi: 10.1103/PhysRevB.96.064517
|
[29] |
EREMETS M I, TROJAN I A, MEDVEDEV S A, et al. Superconductivity in hydrogen dominant materials: silane [J]. Science, 2008, 319(5869): 1506–1509. doi: 10.1126/science.1153282
|
[30] |
DROZDOV A P, EREMETS M I, TROYAN I A. Superconductivity above 100 K in PH3 at high pressures [EB/OL]. arXiv: 1508.06224. (2015-08-25) [2023-10-30]. https://arxiv.org/abs/1508.06224.
|
[31] |
LI Y W, HAO J, LIU H Y, et al. The metallization and superconductivity of dense hydrogen sulfide [J]. The Journal of Chemical Physics, 2014, 140(17): 174712. doi: 10.1063/1.4874158
|
[32] |
DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964
|
[33] |
DUAN D F, LIU Y X, TIAN F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high- Tc superconductivity [J]. Scientific Reports, 2014, 4(1): 6968. doi: 10.1038/srep06968
|
[34] |
EINAGA M, SAKATA M, ISHIKAWA T, et al. Crystal structure of the superconducting phase of sulfur hydride [J]. Nature Physics, 2016, 12(9): 835–838. doi: 10.1038/nphys3760
|
[35] |
MOZAFFARI S, SUN D, MINKOV V S, et al. Superconducting phase diagram of H3S under high magnetic fields [J]. Nature Communications, 2019, 10(1): 2522. doi: 10.1038/s41467-019-10552-y
|
[36] |
PÉPIN C, LOUBEYRE P, OCCELLI F, et al. Synthesis of lithium polyhydrides above 130 GPa at 300 K [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(25): 7673–7676. doi: 10.1073/pnas.1507508112
|
[37] |
STRUZHKIN V V, KIM D Y, STAVROU E, et al. Synthesis of sodium polyhydrides at high pressures [J]. Nature Communications, 2016, 7(1): 12267. doi: 10.1038/ncomms12267
|
[38] |
PÉPIN C M, GENESTE G, DEWAELE A, et al. Synthesis of FeH5: a layered structure with atomic hydrogen slabs [J]. Science, 2017, 357(6349): 382–385. doi: 10.1126/science.aan0961
|
[39] |
CHEN W H, SEMENOK D V, KVASHNIN A G, et al. Synthesis of molecular metallic barium superhydride: pseudocubic BaH12 [J]. Nature Communications, 2021, 12: 273. doi: 10.1038/s41467-020-20103-5
|
[40] |
WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466. doi: 10.1073/pnas.1118168109
|
[41] |
FENG X L, ZHANG J R, GAO G Y, et al. Compressed sodalite-like MgH6 as a potential high-temperature superconductor [J]. RSC Advances, 2015, 5(73): 59292–59296. doi: 10.1039/C5RA11459D
|
[42] |
PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001
|
[43] |
LIU H Y, NAUMOV I I, HOFFMANN R, et al. Potential high- Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6990–6995. doi: 10.1073/pnas.1704505114
|
[44] |
ZHONG X, SUN Y, IITAKA T, et al. Prediction of above-room-temperature superconductivity in lanthanide/actinide extreme superhydrides [J]. Journal of the American Chemical Society, 2022, 144(29): 13394–13400. doi: 10.1021/jacs.2c05834
|
[45] |
XIE H, YAO Y S, FENG X L, et al. Hydrogen pentagraphenelike structure stabilized by hafnium: a high-temperature conventional superconductor [J]. Physical Review Letters, 2020, 125(21): 217001. doi: 10.1103/PhysRevLett.125.217001
|
[46] |
SOMAYAZULU M, AHART M, MISHRA A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures [J]. Physical Review Letters, 2019, 122(2): 027001. doi: 10.1103/PhysRevLett.122.027001
|
[47] |
DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
|
[48] |
TROYAN I A, SEMENOK D V, KVASHNIN A G, et al. Anomalous high-temperature superconductivity in YH6 [J]. Advances Materials, 2021, 33(15): 2006832. doi: 10.1002/adma.202006832
|
[49] |
KONG P P, MINKOV V S, KUZOVNIKOV M A, et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure [J]. Nature Communications, 2021, 12(1): 5075. doi: 10.1038/s41467-021-25372-2
|
[50] |
SNIDER E, DASENBROCK-GAMMON N, MCBRIDE R, et al. Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures [J]. Physical Review Letters, 2021, 126(11): 117003. doi: 10.1103/PhysRevLett.126.117003
|
[51] |
SEMENOK D V, KVASHNIN A G, IVANOVA A G, et al. Superconductivity at 161 K in thorium hydride ThH10: synthesis and properties [J]. Materials Today, 2020, 33: 36–44. doi: 10.1016/j.mattod.2019.10.005
|
[52] |
CHEN W H, SEMENOK D V, HUANG X L, et al. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar [J]. Physical Review Letters, 2021, 127(11): 117001. doi: 10.1103/PhysRevLett.127.117001
|
[53] |
ZHOU D, SEMENOK D V, XIE H, et al. High-pressure synthesis of magnetic neodymium polyhydrides [J]. Journal of the American Chemical Society, 2020, 142(6): 2803–2811. doi: 10.1021/jacs.9b10439
|
[54] |
ZHOU D, SEMENOK D V, DUAN D F, et al. Superconducting praseodymium superhydrides [J]. Science Advances, 2020, 6(9): eaax6849. doi: 10.1126/sciadv.aax6849
|
[55] |
MA L, ZHOU M, WANG Y Y, et al. Experimental clathrate superhydrides EuH6 and EuH9 at extreme pressure conditions [J]. Physical Review Research, 2021, 3(4): 043107. doi: 10.1103/PhysRevResearch.3.043107
|
[56] |
MA L, WANG K, XIE Y, et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa [J]. Physical Review Letters, 2022, 128(16): 167001. doi: 10.1103/PhysRevLett.128.167001
|
[57] |
LI Z W, HE X, ZHANG C L, et al. Superconductivity above 200 K discovered in superhydrides of calcium [J]. Nature Communication, 2022, 13(1): 2863. doi: 10.1038/s41467-022-30454-w
|
[58] |
SHAO M Y, CHEN W H, ZHANG K X, et al. High-pressure synthesis of superconducting clathratelike YH4 [J]. Physical Review B, 2021, 104(17): 174509. doi: 10.1103/PhysRevB.104.174509
|
[59] |
WANG Y Y, WANG K, SUN Y, et al. Synthesis and superconductivity in yttrium superhydrides under high pressure [J]. Chinese Physics B, 2022, 31(10): 106201. doi: 10.1088/1674-1056/ac872e
|
[60] |
HONG F, SHAN P F, YANG L X, et al. Superconductivity at ~70 K in tin hydride SnH x under high pressure [EB/OL]. arXiv: 2101.02846. (2021-01-08)[2023-10-30]. https://arxiv.org/abs/2101.02846.
|
[61] |
HE X, ZHANG C L, LI Z W, et al. Superconductivity observed in tantalum polyhydride at high pressure [J]. Chinese Physics Letters, 2023, 40(5): 057404. doi: 10.1088/0256-307X/40/5/057404
|
[62] |
LU K, HE X, ZHANG C L, et al. Superconductivity with Tc 116 K discovered in antimony polyhydrides [EB/OL]. arXiv: 2310.04033. (2023-10-06)[2023-10-30]. https://arxiv.org/abs/2310.04033.
|
[63] |
LI Z W, HE X, ZHANG C L, et al. Superconductivity above 70 K observed in lutetium polyhydrides [J]. Science China Physics, Mechanics & Astronomy, 2023, 66(6): 267411.
|
[64] |
SUN Y, LV J, XIE Y, et al. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure [J]. Physical Review Letters, 2019, 123(9): 097001. doi: 10.1103/PhysRevLett.123.097001
|
[65] |
SUN Y, WANG Y C, ZHONG X, et al. High-temperature superconducting ternary Li-R-H superhydrides at high pressures (R=Sc, Y, La) [J]. Physical Review B, 2022, 106(2): 024519. doi: 10.1103/PhysRevB.106.024519
|
[66] |
AN D C, DUAN D F, ZHANG Z H, et al. Thermodynamically stable room-temperature superconductors in Li-Na hydrides under high pressures [EB/OL]. arXiv: 2303.09805. (2023-03-17)[2023-10-30]. https://arxiv.org/abs/2303.09805.
|
[67] |
ZHANG P Y, SUN Y, LI X, et al. Structure and superconductivity in compressed Li-Si-H compounds: density functional theory calculations [J]. Physical Review B, 2020, 102(18): 184103. doi: 10.1103/PhysRevB.102.184103
|
[68] |
SHAO Z J, DUAN D F, MA Y B, et al. Ternary superconducting cophosphorus hydrides stabilized via lithium [J]. NPJ Computational Materials, 2019, 5(1): 104. doi: 10.1038/s41524-019-0244-6
|
[69] |
LI X, XIE Y, SUN Y, et al. Chemically tuning stability and superconductivity of P-H compounds [J]. The Journal of Physical Chemistry Letters, 2020, 11(3): 935–939. doi: 10.1021/acs.jpclett.9b03856
|
[70] |
DI CATALDO S, VON DER LINDEN W, BOERI L, et al. First-principles search of hot superconductivity in La-X-H ternary hydrides [J]. NPJ Computational Materials, 2022, 8: 2. doi: 10.1038/s41524-021-00691-6
|
[71] |
LIANG X W, BERGARA A, WEI X D, et al. Prediction of high- Tc superconductivity in ternary lanthanum borohydrides [J]. Physical Review B, 2021, 104(13): 134501. doi: 10.1103/PhysRevB.104.134501
|
[72] |
DI CATALDO S, HEIL C, VON DER LINDEN W, et al. LaBH8: towards high- Tc low-pressure superconductivity in ternary superhydrides [J]. Physical Review B, 2021, 104(2): L020511. doi: 10.1103/PhysRevB.104.L020511
|
[73] |
ZHANG Z H, CUI T, HUTCHEON M J, et al. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure [J]. Physical Review Letters, 2022, 128(4): 047001. doi: 10.1103/PhysRevLett.128.047001
|
[74] |
DU M Y, SONG H, ZHANG Z H, et al. Room-temperature superconductivity in Yb/Lu substituted clathrate hexahydrides under moderate pressure [J]. Research, 2022, 2022: 9784309. doi: 10.34133/2022/9784309
|
[75] |
SUKMAS W, TSUPPAYAKORN-AEK P, PINSOOK U, et al. Near-room-temperature superconductivity of Mg/Ca substituted metal hexahydride under pressure [J]. Journal of Alloys and Compounds, 2020, 849: 156434. doi: 10.1016/j.jallcom.2020.156434
|
[76] |
YANG K P, SUN H J, CHEN H L, et al. Stable structures and superconducting properties of Ca-La-H compounds under pressure [J]. Journal of Physics: Condensed Matter, 2022, 34(35): 355401. doi: 10.1088/1361-648X/ac79ed
|
[77] |
LIU L L, PENG F, SONG P, et al. Generic rules for achieving room-temperature superconductivity in ternary hydrides with clathrate structures [J]. Physical Review B, 2023, 107(2): L020504. doi: 10.1103/PhysRevB.107.L020504
|
[78] |
SONG P, HOU Z F, DE CASTRO P B, et al. The systematic study on the stability and superconductivity of Y-Mg-H compounds under high pressure [J]. Advanced Theory and Simulations, 2022, 5(3): 2100364. doi: 10.1002/adts.202100364
|
[79] |
KAMEGAWA A, GOTO Y, KAKUTA H, et al. High-pressure synthesis of novel hydrides in Mg-RE-H systems (RE= Y, La, Ce, Pr, Sm, Gd, Tb, Dy) [J]. Journal of Alloys and Compounds, 2006, 408/409/410/411/412: 284−287.
|
[80] |
SUN Y, TIAN Y F, JIANG B W, et al. Computational discovery of a dynamically stable cubic SH3-like high-temperature superconductor at 100 GPa via CH4 intercalation [J]. Physical Review B, 2020, 101(17): 174102. doi: 10.1103/PhysRevB.101.174102
|
[81] |
GE Y F, ZHANG F, YAO Y G. First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution [J]. Physical Review B, 2016, 93(22): 224513. doi: 10.1103/PhysRevB.93.224513
|
[82] |
GENG N S, BI T G, ZUREK E. Structural diversity and superconductivity in S-P-H ternary hydrides under pressure [J]. The Journal of Physical Chemistry C, 2022, 126(16): 7208–7220. doi: 10.1021/acs.jpcc.1c10976
|
[83] |
SEMENOK D V, TROYAN I A, IVANOVA A G, et al. Superconductivity at 253 K in lanthanum-yttrium ternary hydrides [J]. Materials Today, 2021, 48: 18–28. doi: 10.1016/j.mattod.2021.03.025
|
[84] |
BI J, NAKAMOTO Y, ZHANG P, et al. Stabilization of superconductive La-Y alloy superhydride with Tc above 90 K at megabar pressure [J]. Materials Today Physics, 2022, 28: 100840. doi: 10.1016/j.mtphys.2022.100840
|
[85] |
BI J K, NAKAMOTO Y, ZHANG P Y, et al. Giant enhancement of superconducting critical temperature in substitutional alloy (La, Ce)H9 [J]. Nature Communications, 2022, 13(1): 5952. doi: 10.1038/s41467-022-33743-6
|
[86] |
CHEN S, QIAN Y C, HUANG X L, et al. High-temperature superconductivity up to 223 K in the Al stabilized metastable hexagonal lanthanum superhydride [J]. National Science Review, 2023, 11(1): nwad107. doi: 10.1093/nsr/nwad107
|
[87] |
TALANTSEV E F. Electron-phonon coupling constant and BCS ratios in LaH10- y doped with magnetic rare-earth element [J]. Superconductor Science and Technology, 2022, 35(9): 095008. doi: 10.1088/1361-6668/ac7d78
|
[88] |
SONG Y G, BI J K, NAKAMOTO Y, et al. Stoichiometric ternary superhydride LaBeH8 as a new template for high-temperature superconductivity at 110 K under 80 GPa [J]. Physical Review Letters, 2023, 130(26): 266001. doi: 10.1103/PhysRevLett.130.266001
|
[89] |
HIRSCH J E, MARSIGLIO F. Intrinsic hysteresis in the presumed superconducting transition of hydrides under high pressure [EB/OL]. arXiv: 2101.07208. (2021-01-26)[2023-10-30]. https://arxiv.org/abs/2101.07208.
|
[90] |
HIRSCH J E, MARSIGLIO F. Nonstandard superconductivity or no superconductivity in hydrides under high pressure [J]. Physical Review B, 2021, 103(13): 134505. doi: 10.1103/PhysRevB.103.134505
|
[91] |
EREMETS M I, MINKOV V S, DROZDOV A P, et al. High-temperature superconductivity in hydrides: experimental evidence and details [J]. Journal of Superconductivity and Novel Magnetism, 2022, 35(4): 965–977. doi: 10.1007/s10948-022-06148-1
|
[92] |
MINKOV V S, BUD’KO S L, BALAKIREV F F, et al. Magnetic field screening in hydrogen-rich high-temperature superconductors [J]. Nature Communications, 2022, 13(1): 3194. doi: 10.1038/s41467-022-30782-x
|
[93] |
HUANG X L, WANG X, DUAN D F, et al. High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility [J]. National Science Review, 2019, 6(4): 713–718. doi: 10.1093/nsr/nwz061
|
[94] |
BHATTACHARYYA P, CHEN W H, HUANG X L, et al. Imaging the meissner effect and flux trapping in a hydride superconductor at megabar pressures using a nanoscale quantum sensor [EB/OL]. arXiv: 2306.03122. (2023-06-05)[2023-10-30]. https://arxiv.org/abs/2306.03122.
|
[95] |
TROYAN I, GAVRILIUK A, RÜFFER R, et al. Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering [J]. Science, 2016, 351(6279): 1303–1306. doi: 10.1126/science.aac8176
|