Citation: | ZHANG Jiantao, LIU Zhixiang, ZHANG Shuangxia, GUO Tengfei, YUAN Congxiang. Slope Stability Prediction Based on WOA-RF Hybrid Model[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 035301. doi: 10.11858/gywlxb.20230837 |
[1] |
陈昌富, 李伟, 张嘉睿, 等. 山区公路边坡工程智能分析与设计研究进展 [J]. 湖南大学学报 (自然科学版), 2022, 49(7): 15–31.
CHEN C F, LI W, ZHANG J R, et al. State-of-the-art of intelligent analysis and design in slope engineering of highways in mountainous areas [J]. Journal of Hunan University (Natural Sciences), 2022, 49(7): 15–31.
|
[2] |
何丽平, 汪晓俊, 郭剑雄, 等. 砂泥岩互层岩质边坡爆破振动衰减规律现场试验研究 [J]. 高压物理学报, 2023, 37(5): 055301.
HE L P, WANG X J, GUO J X, et al. Field experimental research on blasting vibration attenuation law of sand-mudstone interbedded rock slope [J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 055301.
|
[3] |
LIN Y, ZHOU K P, LI J L. Prediction of slope stability using four supervised learning methods [J]. IEEE Access, 2018, 6: 31169–31179. doi: 10.1109/ACCESS.2018.2843787
|
[4] |
KURTZ W, LAPIN A, SCHILLING O S, et al. Integrating hydrological modelling, data assimilation and cloud computing for real-time management of water resources [J]. Environmental Modelling & Software, 2017, 93: 418–435.
|
[5] |
杨杰, 马春辉, 程琳, 等. 高陡边坡变形及其对坝体安全稳定影响研究进展 [J]. 岩土力学, 2019, 40(6): 2341–2353, 2368.
YANG J, MA C H, CHENG L, et al. Research advances in the deformation of high-steep slopes and its influence on dam safety [J]. Rock and Soil Mechanics, 2019, 40(6): 2341–2353, 2368.
|
[6] |
DONG L J, WESSELOO J, POTVIN Y, et al. Discrimination of mine seismic events and blasts using the Fisher classifier, naive Bayesian classifier and logistic regression [J]. Rock Mechanics and Rock Engineering, 2016, 49(1): 183–211. doi: 10.1007/s00603-015-0733-y
|
[7] |
QI C C, TANG X L. A hybrid ensemble method for improved prediction of slope stability [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(15): 1823–1839. doi: 10.1002/nag.2834
|
[8] |
张凯, 张科. 基于LightGBM算法的边坡稳定性预测研究 [J]. 中国安全科学学报, 2022, 32(7): 113–120.
ZHANG K, ZHANG K. Prediction study on slope stability based on LightGBM algorithm [J]. China Safety Science Journal, 2022, 32(7): 113–120.
|
[9] |
武梦婷, 陈秋松, 齐冲冲. 基于机器学习的边坡安全稳定性评价及防护措施 [J]. 工程科学学报, 2022, 44(2): 180–188.
WU M T, CHEN Q S, QI C C. Slope safety, stability evaluation, and protective measures based on machine learning [J]. Chinese Journal of Engineering, 2022, 44(2): 180–188.
|
[10] |
LIN S, ZHENG H, HAN B, et al. Comparative performance of eight ensemble learning approaches for the development of models of slope stability prediction [J]. Acta Geotechnica, 2022, 17(4): 1477–1502. doi: 10.1007/s11440-021-01440-1
|
[11] |
KARIR D, RAY A, KUMAR BHARATI A, et al. Stability prediction of a natural and man-made slope using various machine learning algorithms [J]. Transportation Geotechnics, 2022, 34: 100745. doi: 10.1016/j.trgeo.2022.100745
|
[12] |
陈光耀, 汪明武, 金菊良. 基于CMFOA-SVM的边坡稳定性评价模型 [J]. 长江科学院院报, 2023, 40(2): 95–101.
CHEN G Y, WANG M W, JIN J L. CMFOA-SVM model for evaluating slope stability [J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(2): 95–101.
|
[13] |
QI C C, TANG X L. Slope stability prediction using integrated metaheuristic and machine learning approaches: a comparative study [J]. Computers & Industrial Engineering, 2018, 118: 112–122.
|
[14] |
BREIMAN L. Random forests [J]. Machine Learning, 2001, 45(1): 5–32. doi: 10.1023/A:1010933404324
|
[15] |
MIRJALILI S, LEWIS A. The whale optimization algorithm [J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008
|
[16] |
LIN S, ZHENG H, HAN C, et al. Evaluation and prediction of slope stability using machine learning approaches [J]. Frontiers of Structural and Civil Engineering, 2021, 15(4): 821–833. doi: 10.1007/s11709-021-0742-8
|
[17] |
KHAJEHZADEH M, KEAWSAWASVONG S. Predicting slope safety using an optimized machine learning model [J]. Heliyon, 2023, 9(12): e23012. doi: 10.1016/j.heliyon.2023.e23012
|
[18] |
LU P, ROSENBAUM M S. Artificial neural networks and grey systems for the prediction of slope stability [J]. Natural Hazards, 2003, 30(3): 383–398. doi: 10.1023/B:NHAZ.0000007168.00673.27
|
[19] |
SUN J L, WU S C, ZHANG H J, et al. Based on multi-algorithm hybrid method to predict the slope safety factor-stacking ensemble learning with Bayesian optimization [J]. Journal of Computational Science, 2022, 59: 101587.
|
[20] |
YAN X M, LI X B. Bayes discriminant analysis method for predicting the stability of open pit slope [C]//2011 International Conference on Electric Technology and Civil Engineering (ICETCE). Lushan: IEEE, 2011: 147–150.
|
[21] |
HOANG N D, PHAM A D. Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment: a multinational data analysis [J]. Expert Systems with Applications, 2016, 46: 60–68. doi: 10.1016/j.eswa.2015.10.020
|
[22] |
SAH N K, SHEOREY P R, UPADHYAYA L N. Maximum likelihood estimation of slope stability [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(1): 47–53.
|
[23] |
STONE M. Cross-validatory choice and assessment of statistical predictions [J]. Journal of the Royal Statistical Society: Series B (Methodological), 1974, 36(2): 111–133. doi: 10.1111/j.2517-6161.1974.tb00994.x
|
[24] |
LIU Z D, LI D Y. Intelligent hybrid model to classify failure modes of overstressed rock masses in deep engineering [J]. Journal of Central South University, 2023, 30(1): 156–174. doi: 10.1007/s11771-022-5208-1
|
[25] |
GUYON I, GUNN S, NIKRAVESH M, et al. Feature extraction: foundations and applications (studies in fuzziness & soft computing) [M]. Berlin, Heidelberg: Springer-Verlag, 2006.
|