Volume 38 Issue 3
Jun 2024
Turn off MathJax
Article Contents
ZHANG Jiantao, LIU Zhixiang, ZHANG Shuangxia, GUO Tengfei, YUAN Congxiang. Slope Stability Prediction Based on WOA-RF Hybrid Model[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 035301. doi: 10.11858/gywlxb.20230837
Citation: ZHANG Jiantao, LIU Zhixiang, ZHANG Shuangxia, GUO Tengfei, YUAN Congxiang. Slope Stability Prediction Based on WOA-RF Hybrid Model[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 035301. doi: 10.11858/gywlxb.20230837

Slope Stability Prediction Based on WOA-RF Hybrid Model

doi: 10.11858/gywlxb.20230837
  • Received Date: 25 Dec 2023
  • Rev Recd Date: 19 Jan 2024
  • Accepted Date: 26 Jan 2024
  • Issue Publish Date: 03 Jun 2024
  • To effectively predict slope stability and prevent slope instability occurrence, a hybrid model WOA-RF, combining whale optimization algorithm (WOA) and random forest (RF) was proposed. Based on the collected slope cases, the classification and generalization performance of the model was evaluated according to the classification performance indicators given by the confusion matrix and the area under the receiver operating characteristic curve. Additionally, WOA was used to optimize four widely used machine learning models, and the optimized machine learning models were compared with WOA-RF. The results demonstrate that WOA is effective in optimizing hyperparameters and improving model performance. The optimal WOA-RF model achieves an accuracy of 0.99 on training set and of 0.94 on test set. After optimization, the accuracy, the precision, the recall, and the hamonic mean of the precision and recall are increased by 11.9%, 19.0%, 4.8%, and 11.9%, respectively. Comparative analysis reveals that the WOA-RF model is superior to the others in all indicators. Furthermore, the feature importance ranking was determined. Analysis of the feature importance indicates that unit weight is the most sensitive feature affecting slope stability. The established WOA-RF model is proved effective in predicting slope stability and facilitating the development of appropriate protective measures based on the predicted results.

     

  • loading
  • [1]
    陈昌富, 李伟, 张嘉睿, 等. 山区公路边坡工程智能分析与设计研究进展 [J]. 湖南大学学报 (自然科学版), 2022, 49(7): 15–31.

    CHEN C F, LI W, ZHANG J R, et al. State-of-the-art of intelligent analysis and design in slope engineering of highways in mountainous areas [J]. Journal of Hunan University (Natural Sciences), 2022, 49(7): 15–31.
    [2]
    何丽平, 汪晓俊, 郭剑雄, 等. 砂泥岩互层岩质边坡爆破振动衰减规律现场试验研究 [J]. 高压物理学报, 2023, 37(5): 055301.

    HE L P, WANG X J, GUO J X, et al. Field experimental research on blasting vibration attenuation law of sand-mudstone interbedded rock slope [J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 055301.
    [3]
    LIN Y, ZHOU K P, LI J L. Prediction of slope stability using four supervised learning methods [J]. IEEE Access, 2018, 6: 31169–31179. doi: 10.1109/ACCESS.2018.2843787
    [4]
    KURTZ W, LAPIN A, SCHILLING O S, et al. Integrating hydrological modelling, data assimilation and cloud computing for real-time management of water resources [J]. Environmental Modelling & Software, 2017, 93: 418–435.
    [5]
    杨杰, 马春辉, 程琳, 等. 高陡边坡变形及其对坝体安全稳定影响研究进展 [J]. 岩土力学, 2019, 40(6): 2341–2353, 2368.

    YANG J, MA C H, CHENG L, et al. Research advances in the deformation of high-steep slopes and its influence on dam safety [J]. Rock and Soil Mechanics, 2019, 40(6): 2341–2353, 2368.
    [6]
    DONG L J, WESSELOO J, POTVIN Y, et al. Discrimination of mine seismic events and blasts using the Fisher classifier, naive Bayesian classifier and logistic regression [J]. Rock Mechanics and Rock Engineering, 2016, 49(1): 183–211. doi: 10.1007/s00603-015-0733-y
    [7]
    QI C C, TANG X L. A hybrid ensemble method for improved prediction of slope stability [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(15): 1823–1839. doi: 10.1002/nag.2834
    [8]
    张凯, 张科. 基于LightGBM算法的边坡稳定性预测研究 [J]. 中国安全科学学报, 2022, 32(7): 113–120.

    ZHANG K, ZHANG K. Prediction study on slope stability based on LightGBM algorithm [J]. China Safety Science Journal, 2022, 32(7): 113–120.
    [9]
    武梦婷, 陈秋松, 齐冲冲. 基于机器学习的边坡安全稳定性评价及防护措施 [J]. 工程科学学报, 2022, 44(2): 180–188.

    WU M T, CHEN Q S, QI C C. Slope safety, stability evaluation, and protective measures based on machine learning [J]. Chinese Journal of Engineering, 2022, 44(2): 180–188.
    [10]
    LIN S, ZHENG H, HAN B, et al. Comparative performance of eight ensemble learning approaches for the development of models of slope stability prediction [J]. Acta Geotechnica, 2022, 17(4): 1477–1502. doi: 10.1007/s11440-021-01440-1
    [11]
    KARIR D, RAY A, KUMAR BHARATI A, et al. Stability prediction of a natural and man-made slope using various machine learning algorithms [J]. Transportation Geotechnics, 2022, 34: 100745. doi: 10.1016/j.trgeo.2022.100745
    [12]
    陈光耀, 汪明武, 金菊良. 基于CMFOA-SVM的边坡稳定性评价模型 [J]. 长江科学院院报, 2023, 40(2): 95–101.

    CHEN G Y, WANG M W, JIN J L. CMFOA-SVM model for evaluating slope stability [J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(2): 95–101.
    [13]
    QI C C, TANG X L. Slope stability prediction using integrated metaheuristic and machine learning approaches: a comparative study [J]. Computers & Industrial Engineering, 2018, 118: 112–122.
    [14]
    BREIMAN L. Random forests [J]. Machine Learning, 2001, 45(1): 5–32. doi: 10.1023/A:1010933404324
    [15]
    MIRJALILI S, LEWIS A. The whale optimization algorithm [J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008
    [16]
    LIN S, ZHENG H, HAN C, et al. Evaluation and prediction of slope stability using machine learning approaches [J]. Frontiers of Structural and Civil Engineering, 2021, 15(4): 821–833. doi: 10.1007/s11709-021-0742-8
    [17]
    KHAJEHZADEH M, KEAWSAWASVONG S. Predicting slope safety using an optimized machine learning model [J]. Heliyon, 2023, 9(12): e23012. doi: 10.1016/j.heliyon.2023.e23012
    [18]
    LU P, ROSENBAUM M S. Artificial neural networks and grey systems for the prediction of slope stability [J]. Natural Hazards, 2003, 30(3): 383–398. doi: 10.1023/B:NHAZ.0000007168.00673.27
    [19]
    SUN J L, WU S C, ZHANG H J, et al. Based on multi-algorithm hybrid method to predict the slope safety factor-stacking ensemble learning with Bayesian optimization [J]. Journal of Computational Science, 2022, 59: 101587.
    [20]
    YAN X M, LI X B. Bayes discriminant analysis method for predicting the stability of open pit slope [C]//2011 International Conference on Electric Technology and Civil Engineering (ICETCE). Lushan: IEEE, 2011: 147–150.
    [21]
    HOANG N D, PHAM A D. Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment: a multinational data analysis [J]. Expert Systems with Applications, 2016, 46: 60–68. doi: 10.1016/j.eswa.2015.10.020
    [22]
    SAH N K, SHEOREY P R, UPADHYAYA L N. Maximum likelihood estimation of slope stability [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(1): 47–53.
    [23]
    STONE M. Cross-validatory choice and assessment of statistical predictions [J]. Journal of the Royal Statistical Society: Series B (Methodological), 1974, 36(2): 111–133. doi: 10.1111/j.2517-6161.1974.tb00994.x
    [24]
    LIU Z D, LI D Y. Intelligent hybrid model to classify failure modes of overstressed rock masses in deep engineering [J]. Journal of Central South University, 2023, 30(1): 156–174. doi: 10.1007/s11771-022-5208-1
    [25]
    GUYON I, GUNN S, NIKRAVESH M, et al. Feature extraction: foundations and applications (studies in fuzziness & soft computing) [M]. Berlin, Heidelberg: Springer-Verlag, 2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views(63) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return