LI Xianglong, YANG Changhui, WANG Jianguo, WANG Zichen, HU Qiwen. Parameter Optimization of Presplitting Blasting Based on Model Test[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025301. doi: 10.11858/gywlxb.20210830
Citation: WANG Jiuqiang, LI Yongcun, LIU Chaoyang, LEI Keming, GUO Zhangxin, LUAN Yunbo. Synergistic Effects of “Carbon Fibre-Graphene” Hybrid Systems and Microwave Post-Treatment Processes on the Mechanics of 3D Printed Polyurethane Composites[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 034102. doi: 10.11858/gywlxb.20230814

Synergistic Effects of “Carbon Fibre-Graphene” Hybrid Systems and Microwave Post-Treatment Processes on the Mechanics of 3D Printed Polyurethane Composites

doi: 10.11858/gywlxb.20230814
  • Received Date: 14 Dec 2023
  • Rev Recd Date: 18 Jan 2024
  • Available Online: 22 May 2024
  • Issue Publish Date: 03 Jun 2024
  • The 3D printing manufacturing process and mechanical behaviors of “carbon fiber-graphene” (CF-G) reinforced thermoplastic polyurethane (TPU) composites were investigated. The CF-G reinforced TPU composite filaments were prepared by the screw extrusion process, then the G+CF/TPU composites were manufactured by the fused deposition modeling (FDM) technology and microwave post-treatment process. It shows that the CF-G heterostructure can synergistically enhance the mechanical properties of TPU composites. Especially, by adopting the novel microwave post-treatment process, the G+CF/TPU specimens exhibited the further improved tensile strength and toughness, which may be attributed to the promoted interface bonding between the reinforcing phase and matrix, and the reduced internal defects between points, layers, and channels induced by the synergistic effect between the CF-G heterostructure and microwave. This study has positive significance for exploring the mechanical reinforcement and post-treatment processes of 3D printed materials.

     

  • 磁驱动固体套筒内爆是指电流通过金属套筒表面时,在洛仑兹力的作用下金属套筒径向向内箍缩内爆的物理过程。1973年,Turchi等[1]首次提出磁驱动固体套筒内爆的概念。自20世纪90年代以来,磁驱动固体套筒实验被广泛应用于高压状态方程[2]、材料本构[3]、层裂损伤[4]、磁瑞利-泰勒(Magneto-Rayleigh-Taylor,MRT)不稳定性发展[56]、Richtmyer-Meshkov(RM)不稳定性发展[7]等研究。

    磁驱动固体套筒实验涉及热扩散、磁扩散、焦耳加热、弹塑性、断裂、层裂等物理过程,并伴有大变形、界面不稳定性等现象。磁驱动固体套筒理论有薄壳模型[810]、不可压缩模型[1113]、电作用量-速度模型[1415]、全电路模型[15]和磁流体力学模型[1617]等。这些理论模型已被用于脉冲功率装置、磁驱动固体套筒实验的模拟、设计和研究[717]。阚明先等[17]采用二维磁流体力学程序MDSC2模拟回流罩结构磁驱动固体套筒实验时发现,根据回流罩结构磁驱动固体套筒实验测量的电流或回路电流不能直接模拟磁驱动固体套筒,模拟的套筒速度总是比测量速度大,即回路电流并不完全从固体套筒表面流过。回路电流与固体套筒上通过的电流之间存在一个电流系数。由于MDSC2程序[17]以外的理论计算或数值模拟都未提到电流系数,因此,本研究采用其他理论模型对磁驱动固体套筒实验进行模拟,分析回路电流与通过固体套筒的电流之间的关系,通过模拟分析不同回流罩结构固体套筒实验,进一步探讨磁驱动固体套筒实验中电流系数的影响因素和变化规律。

    大电流脉冲装置上的固体套筒实验通常采用回流罩结构[15, 1718]。回流罩结构固体套筒实验的初始结构的rz剖面如图1所示,其中,虚线为对称轴。回流罩结构固体套筒实验装置从外到内依次为金属回流罩、绝缘材料和金属套筒,套筒两端为金属电极,上端为阳极,下端为阴极。回路电流从回流罩金属流入,绕过绝缘材料,经过套筒的外表面从阴极流出。电流加载后,电极外面的固体套筒被切割成与阴阳极之间的间隙等高的套筒,在洛仑兹力作用下沿径向向内箍缩。表1为FP-2装置[19]中回流罩结构磁驱动固体套筒实验的套筒参数。图2显示了FP-2装置上不同实验测得的电流变化曲线,电流的上升时间约为5500 ns,电流峰值为9~11 MA。

    图  1  回流罩固体套筒实验装置的初始结构剖面
    Figure  1.  Cross section of magnetically driven solid liner experiment setup with a reflux hood
    表  1  磁驱动固体套筒实验的套筒参数
    Table  1.  Liner parameters of the magnetically driven solid liner experiments
    Exp. No.Liner materialLiner’s inner radius/mmLiner’s thickness/mm
    1Al450.6
    2Al300.6
    3Al451.6
    4Al301.9
    下载: 导出CSV 
    | 显示表格
    图  2  磁驱动固体套筒实验测得的电流
    Figure  2.  Measured currents for magnetically driven solid liner experiments

    在薄壳模型、不可压缩模型、电作用量-速度模型、全电路模型、磁流体力学模型等[816]适用于磁驱动固体套筒的理论模型中,固体套筒边界的磁感应强度(B)为

    B(t)=μ0Iexp(t)2πro
    (1)

    式中:μ0为真空磁导率,Iexp(t)为磁驱动实验测量电流,ro为固体套筒的外半径。

    二维磁驱动数值模拟程序MDSC2是由中国工程物理研究院流体物理研究所开发的二维磁流体力学程序[2021]。该程序已被广泛应用于磁驱动飞片发射、超薄飞片、磁驱动准等熵压缩、磁驱动样品等实验的模拟研究[2225]。最近,研究人员发现,采用MDSC2程序模拟FP-2装置上的磁驱动固体套筒实验时,基于实验测量的电流或回路电流并不能正确模拟套筒的动力学过程,模拟的套筒速度总是比实验测量值大。为正确模拟FP-2装置上的磁驱动固体套筒实验,需将边界磁感应强度公式[17]修正为

    B(t)=μ0fcIexp(t)2πro
    (2)

    式中:fc为回流罩结构rz柱面套筒的电流系数,fc<1。由于文献[17]之外的理论计算或数值模拟中均未提到电流系数fc,因此,需要确定fc是回流罩固体套筒实验固有的,还是MDSC2程序造成的。下面采用固体套筒的不可压缩模型理论确认电流系数是否存在。

    在磁驱动固体套筒的不可压缩模型[1113]中,不考虑套筒的磁扩散,假设磁压只作用于套筒的外表面,且磁压做功全部转化为套筒动能,套筒不可压缩,只作径向运动。设ρ为套筒密度,h为套筒高度,vo为套筒外界面速度,rivi分别为套筒内半径和内界面速度,rv为套筒内某点的径向位置(rirro)和速度,由不可压缩假设,有

    rivi=rovo
    (3)
    rv=rovo
    (4)

    则套筒总动能Ek

    Ek=roriρπrhv2dr=πρhr2ov2olnrori
    (5)

    由于磁压只作用于套筒的外表面,且磁压做功全部转化为套筒动能,则

    dEkdt=2πμ0rohvoB2
    (6)

    将式(5)代入式(6)并积分,可得

    dvodt=v2oro1ln(ro/ri)[B22μ0ρro+v2o2ro(1r2or2i)]
    (7)
    dvidt=v2iri1ln(ro/ri)[B22μ0ρri+v2o2ri(1r2ir2o)]
    (8)

    采用上述不可压缩模型,对固体套筒实验4进行不可压缩模型模拟验证。图3给出了采用不可压缩模型模拟得到的套筒内界面速度。显然,采用回路电流或测量电流直接模拟的套筒速度明显比实验测量速度大,后者是前者的0.82倍,即计算不可压缩模型的边界磁感应强度时不能用式(1),而是用式(2)。不可压缩模型的模拟结果表明,对于回流罩固体套筒实验,回路电流或测量电流与固体套筒上通过的电流之间的电流系数不是MDSC2程序造成的,而是回流罩固体套筒实验固有的。

    图  3  不可压缩模型模拟得到的套筒内界面速度
    Figure  3.  Liner interface velocity simulated by incompressible model

    从第2节的模拟可知,磁驱动固体套筒理论的边界磁感应强度公式中包含电流系数,它反映了有多少回路电流从套筒实际流过。在磁驱动实验中,实验测量的电流是流入回流罩之前的电流,即回路电流,而不是从套筒直接流过的电流。从套筒流过的电流很难被直接测量,因此,电流系数难以预知。回流罩的结构比较复杂,阴阳电极之间连有金属套筒、绝缘材料,金属套筒与绝缘材料之间是真空,回流罩结构的分流机制包括阴阳极间的并联电路分流、漏磁、真空击穿等。事实上,电流系数是通过数值模拟发现的,由磁流体力学程序模拟速度与磁驱动套筒实验测量速度的对比确定。当前的固体套筒实验的模拟都是后验的,无法直接正确预测,因此,研究电流系数的变化规律非常重要,是正确设计和预测固体套筒实验的基础。

    由于磁流体力学模型[21, 26]是包含固体弹塑性、热扩散、磁扩散等物理过程的可压缩模型,能够比不可压缩模型更加准确地描述磁驱动固体套筒实验,因此,下面将采用MDSC2程序对FP-2装置上开展的磁驱动固体套筒实验的电流系数变化规律进行研究。

    图4给出了实验1~实验4的套筒内界面模拟速度。可以看出,应用式(2)的磁流体力学模型能正确描述磁驱动固体套筒实验。然而,不同的磁驱动固体套筒实验对应的电流系数是不同的。回流罩结构磁驱动固体套筒实验的电流系数和套筒的初始尺寸列于表2

    图  4  实验 1~实验4的套筒内界面速度
    Figure  4.  Interface velocities of the experimental liners for Exp. 1−Exp. 4
    表  2  磁驱动固体套筒实验的电流系数
    Table  2.  Current coefficients of the magnetically driven solid liner experiments
    Exp. No.Liner’s inner radius/mmLiner’s thickness/mmfc
    1450.60.87
    2300.60.90
    3451.60.85
    4301.90.88
    下载: 导出CSV 
    | 显示表格

    表2可知:电流系数是常数,不随时间的发展而变化,即电流系数与实验过程无关;对于不同的套筒,电流系数有所不同,说明电流系数与套筒的初始结构有关。由实验1和实验2可知,当套筒厚度相同时,若套筒内半径不同,则电流系数不同,且内半径越大,电流系数越小。对比实验1和实验3,或者实验2和实验4可知,当套筒内半径相同时,若套筒厚度不同,则电流系数不同,且套筒厚度越大,电流系数越小。

    采用不可压缩模型验证了回流罩结构磁驱动固体套筒实验中电流系数的存在,即回流罩结构磁驱动固体套筒实验的实验电流/回路电流并不完全从负载套筒的表面通过,实验电流/回路电流与套筒表面流过的电流之间存在一个电流系数。采用包含固体弹塑性、热扩散、磁扩散的磁流体力学模型,对回流罩结构磁驱动固体套筒实验的电流系数进行了确定和分析,结果显示,磁流体力学模型和有电流系数的边界磁感应强度公式能正确模拟回流罩结构磁驱动固体套筒实验。电流系数与套筒结构的关系为:

    (1) 不同套筒对应的电流系数不同;

    (2) 电流系数与实验过程无关,由套筒初始结构决定;

    (3) 套筒厚度相同时,电流系数由套筒内半径决定,套筒内半径越大,电流系数越小;

    (4) 套筒内半径相同时,电流系数由套筒厚度决定,套筒厚度越大,电流系数越小。

    正确认识磁驱动固体套筒实验的电流系数变化规律,使磁驱动固体套筒实验的磁流体模拟从后验模拟发展成先验的准确设计和预测,有助于降低实验成本,加快柱面相关的实验研究。

  • [1]
    侯祥龙, 雷建银, 李世强, 等. 3D打印贝壳仿生复合材料的拉伸力学行为 [J]. 高压物理学报, 2020, 34(1): 014102. doi: 10.11858/gywlxb.20190768

    HOU X L, LEI J Y, LI S Q, et al. Tension mechanical behavior of 3D printed composite materials inspired by nacre [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 014102. doi: 10.11858/gywlxb.20190768
    [2]
    孟祥生, 武晓东, 张海广. 3D打印浆砌层合结构复合材料层间断裂韧性的数值模拟 [J]. 高压物理学报, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827

    MENG X S, WU X D, ZHANG H G. Numerical simulation on interlaminar fracture toughness of 3D printed mortar laminated composites [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827
    [3]
    于鹏, 韦归鸿, 黄圣华, 等. 3D打印TPU/PCL共混物食管支架在食管内的生物力学性能 [J]. 工程塑料应用, 2023, 51(9): 123–129. doi: 10.3969/j.issn.1001-3539.2023.09.020

    YU P, WEI G H, HUANG S H, et al. Biomechanical properties of 3D printed TPU/PCL blends for esophageal stents in the esopha-gus [J]. Engineering Plastics Application, 2023, 51(9): 123–129. doi: 10.3969/j.issn.1001-3539.2023.09.020
    [4]
    YAN J, DEMIRCI E, GANESAN A, et al. Extrusion width critically affects fibre orientation in short fibre reinforced material extrusion additive manufacturing [J]. Additive Manufacturing, 2022, 49: 102496. doi: 10.1016/j.addma.2021.102496
    [5]
    TEKINALP H L, KUNC V, VELEZ-GARCIA G M, et al. Highly oriented carbon fiber-polymer composites via additive manufacturing [J]. Composites Science and Technology, 2014, 105: 144–150. doi: 10.1016/j.compscitech.2014.10.009
    [6]
    NUGROHO W T, DONG Y, PRAMANIK A, et al. Smart polyurethane composites for 3D or 4D printing: general-purpose use, sustainability and shape memory effect [J]. Composites Part B: Engineering, 2021, 223: 109104. doi: 10.1016/j.compositesb.2021.109104
    [7]
    WANG X, JIANG M, ZHOU Z W, et al. 3D printing of polymer matrix composites: a review and prospective [J]. Composites Part B: Engineering, 2017, 110: 442–458. doi: 10.1016/j.compositesb.2016.11.034
    [8]
    LIU W B, WU N, POCHIRAJU K. Shape recovery characteristics of SiC/C/PLA composite filaments and 3D printed parts [J]. Composites Part A: Applied Science and Manufacturing, 2018, 108: 1–11. doi: 10.1016/j.compositesa.2018.02.017
    [9]
    DUTY C E, KUNC V, COMPTON B, et al. Structure and mechanical behavior of big area additive manufacturing (BAAM) materials [J]. Rapid Prototyping Journal, 2017, 23(1): 181–189. doi: 10.1108/RPJ-12-2015-0183
    [10]
    HUA L Q, WANG X, DING L N, et al. Effects of fabrication parameters on the mechanical properties of short basalt-fiber-reinforced thermoplastic composites for fused deposition modeling-based 3D printing [J]. Polymer Composites, 2023, 44(6): 3341–3357. doi: 10.1002/pc.27325
    [11]
    HMEIDAT N S, PACK R C, TALLEY S J, et al. Mechanical anisotropy in polymer composites produced by material extrusion additive manufacturing [J]. Additive Manufacturing, 2020, 34: 101385.
    [12]
    TZOUNIS L, PETOUSIS M, GRAMMATIKOS S, et al. 3D printed thermoelectric polyurethane/multiwalled carbon nanotube nanocomposites: a novel approach towards the fabrication of flexible and stretchable organic thermoelectrics [J]. Materials, 2020, 13(12): 2879. doi: 10.3390/ma13122879
    [13]
    NING F, CONG W, QIU J, et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling [J]. Composites Part B: Engineering, 2015, 80: 369–378. doi: 10.1016/j.compositesb.2015.06.013
    [14]
    CAO L, XIAO J, KIM J K, et al. Effect of post-process treatments on mechanical properties and surface characteristics of 3D printed short glass fiber reinforced PLA/TPU using the FDM process [J]. CIRP Journal of Manufacturing Science and Technology, 2023, 41: 135–143. doi: 10.1016/j.cirpj.2022.12.008
    [15]
    MUSHTAQ R T, WANG Y, KHAN A M, et al. A post-processing laser polishing method to improve process performance of 3D printed new industrial nylon-6 polymer [J]. Journal of Manufacturing Processes, 2023, 101: 546–560. doi: 10.1016/j.jmapro.2023.06.019
    [16]
    BARMOUZ M, HOSSEIN BEHRAVESH A. Shape memory behaviors in cylindrical shell PLA/TPU-cellulose nanofiber bio-nanocomposites: analytical and experimental assessment [J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 160–172. doi: 10.1016/j.compositesa.2017.06.014
    [17]
    HAN S, CHAND A, ARABY S,et al. Thermally and electrically conductive multifunctional sensor based on epoxy/graphene composite [J]. Nanotechnology, 2020, 31(7): 075702. doi: 10.1088/1361-6528/ab5042
    [18]
    SANG L, HAN S F, LI Z P, et al. Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications [J]. Composites Part B: Engineering, 2019, 164: 629–639. doi: 10.1016/j.compositesb.2019.01.085
  • Relative Articles

    [1]SHI Xinhui, YANG Lei, YANG Xue, KANG Hongliang, YUAN Wenshuo, LIU Fusheng. Thermal Radiation Characteristics of RDX-Based PBX Explosives during Shock-Induced Ignition Reactions[J]. Chinese Journal of High Pressure Physics, 2025, 39(1): 011301. doi: 10.11858/gywlxb.20240814
    [2]WU Meiqi, ZHAN Jinhui, LI Jiangtao, WANG Kun, LIU Xiaoxing. Structural Phase Transition of Single-Crystalline Iron under Shock Loading along the [110] Direction: Molecular Dynamics Simulations Based on Different Potential Functions[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251037
    [3]HONG Yifei, LI Xuhai, WU Fengchao, ZHANG Zhaoguo, ZHANG Jian, CHEN Sen, WANG Yuan, YU Yuying, HU Jianbo. Spall Damage of Cr-Ni-Mo Steel under Shock-Release-Reloading Conditions[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054101. doi: 10.11858/gywlxb.20240757
    [4]MI Xingyu, ZHONG Zheng, JIANG Zhaoxiu, WANG Yonggang. Effect of FCC Metal Crystal Orientation on Void Growth under High Strain Rate Loading[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024204. doi: 10.11858/gywlxb.20220711
    [5]YE Changqing, CHEN Ran, LIU Guisen, LIU Jingnan, HU Jianbo, YU Yuying, WANG Dong, CHEN Kaiguo, SHEN Yao. Crystal Plasticity Finite Element Simulation of Polycrystal Aluminum under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064203. doi: 10.11858/gywlxb.20220605
    [6]YU Jidong, YAO Songlin, WU Qiang. Advances of Phase Field Modeling of Martensitic Phase Transformation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040109. doi: 10.11858/gywlxb.20210772
    [7]LI Yinghua, CHANG Jingzhen, ZHANG Lin, SONG Ping. Experimental Investigation of Spall Damage in Pure Aluminum with Helium Bubbles[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054101. doi: 10.11858/gywlxb.20210770
    [8]LUO Guoqiang, FEI Xihuan, YU Yin, ZHANG Ruizhi, ZHANG Chengcheng, SHEN Qiang. Effect of Voids Arrangement on Behavior of PMMA Cellular Materials on Impact Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054202. doi: 10.11858/gywlxb.20200542
    [9]ZHAO Weiye, ZHAO Dan, LÜ Pin, JIN Tao, MA Shengguo. Finite Element Calculation of Polycrystalline Shear-Compression Specimens with Static Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024203. doi: 10.11858/gywlxb.20190836
    [10]SUN Xiaobo, GAO Yubo, XU Peng. Failure and Fracture Characteristics of Al2O3 Ceramics under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 054202. doi: 10.11858/gywlxb.20180695
    [11]LIU Jingnan, YE Changqing, CHEN Kaiguo, YU Yuying, SHEN Yao. Crystal Plasticity Finite Element Simulation of High-Rate Shock Deformation Process of <100> LiF[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014101. doi: 10.11858/gywlxb.20180551
    [12]JIN Ke, WU Qiang, LI Jia-Bo, ZHOU Xian-Ming, YE Su-Hua, LI Jun. Simultaneous Measurement of Sound Velocity and Temperature of Single Crystal NaCl under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 707-717. doi: 10.11858/gywlxb.2017.06.005
    [13]WANG Hong-Bo, WANG Qi-Hua, LU Yong-Gang, LIANG Bin. Ignition Characteristics of PBX Explosives at Meso-Structural Level under Shock and Ramp Loading[J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 27-34. doi: 10.11858/gywlxb.2017.01.005
    [14]GONG Yun-Yun, LU Ji, GU Zhuo-Wei, SONG Zhen-Fei, ZHAO Shi-Cao, MO Jian-Jun, TAO Yan-Hui. Study on the Compression Properties of Periodic Copper Wire Closed-Packed Structure[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 331-338. doi: 10.11858/gywlxb.2014.03.011
    [15]ZHANG Wei, YE Nan, WEI Gang, HUANG Wei. Effect of Shock Compression on Germination Rate of Plant Seeds[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 507-512. doi: 10.11858/gywlxb.2014.04.018
    [16]LIU Zhi-Ming, CUI Tian, HE Wen-Jong, ZOU Guang-Tian, WEI Meng-Fu, CHEN Chang-An. Pressure Effects on the Behavior of Helium in Niobium[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 225-231 . doi: 10.11858/gywlxb.2008.03.001
    [17]QI Mei-Lan, HE Hong-Liang, WANG Yong-Gang, YAN Shi-Lin. Dynamic Analysis of Helium Bubble Growth in the Pure Al under High Strain-Rate Loading[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 145-150 . doi: 10.11858/gywlxb.2007.02.005
    [18]GONG Ping, TANG Zhi-Ping, SHEN Zhao-Wu. Experimental Investigation and DEM Simulation of Mass Mixing under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 21-26 . doi: 10.11858/gywlxb.2004.01.005
    [19]WEN Dian-Ying, LIN Qi-Wen. Dielectric Breakdown of Ferroelectric Ceramics PZT-95/5 under Shock Compression[J]. Chinese Journal of High Pressure Physics, 1998, 12(3): 199-206 . doi: 10.11858/gywlxb.1998.03.006
    [20]WANG Ke-Gang, DONG Lian-Ke, LONG Qi-Wei. Gauge Field Theory of the Breaking Criterion of Materials Subjected to Intensive Shock Loading[J]. Chinese Journal of High Pressure Physics, 1987, 1(2): 110-120 . doi: 10.11858/gywlxb.1987.02.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(152) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return