Volume 38 Issue 4
Jul 2024
Turn off MathJax
Article Contents
ZHAI Hang, YANG Jinni, WANG Jianyun, LI Quan. Structure and Energy Properties of Nitrogen-Rich Compounds of Main Group Metals under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040101. doi: 10.11858/gywlxb.20230810
Citation: ZHAI Hang, YANG Jinni, WANG Jianyun, LI Quan. Structure and Energy Properties of Nitrogen-Rich Compounds of Main Group Metals under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040101. doi: 10.11858/gywlxb.20230810

Structure and Energy Properties of Nitrogen-Rich Compounds of Main Group Metals under High Pressure

doi: 10.11858/gywlxb.20230810
  • Received Date: 11 Dec 2023
  • Rev Recd Date: 15 Jan 2024
  • Available Online: 29 Mar 2024
  • Issue Publish Date: 25 Jul 2024
  • Nitrogen is the main component of the Earth’s atmosphere, accounting for about 78% by volume. At room temperature and pressure, nitrogen is combined into stable diatomic molecules in the form of triple bonds (N≡N). Under the action of extreme high pressure, nitrogen can dissociate into a solid polynitrogen structure containing double bonds (N=N) or even single bonds (N—N). Due to the huge energy difference between N≡N and N=N or N—N, the transformation process is accompanied by huge energy release, so polynitrogen is a high energy density substance that attracts much attention. However, elemental polymerized nitrogen must be prepared in an environment above millions of atmospheric pressure (100 GPa) which is too harsh, greatly limiting the development and application of such materials. Interestingly, the introduction of metal elements can reduce the reaction barrier and provide chemical pressure, which can effectively reduce the synthetic pressure of polynitrogen and form a rich variety of polynitrogen configurations. This paper focuses on the research progress of main group metal nitriding compounds under high pressure, the physical mechanism of stabilities for metal nitrogen-rich compounds under high pressure, and puts forward the prospect of future design and preparation of new nitrogen-rich compounds.

     

  • loading
  • [1]
    UDDIN J, BARONE V, SCUSERIA G E. Energy storage capacity of polymeric nitrogen [J]. Molecular Physics, 2006, 104(5/6/7): 745–749. doi: 10.1080/00268970500417325
    [2]
    EREMETS M I, GAVRILIUK A G, SEREBRYANAYA N R, et al. Structural transformation of molecular nitrogen to a single-bonded atomic state at high pressures [J]. The Journal of Chemical Physics, 2004, 121(22): 11296–11300. doi: 10.1063/1.1814074
    [3]
    SUN J, MARTINEZ-CANALES M, KLUG D D, et al. Stable all-nitrogen metallic salt at terapascal pressures [J]. Physical Review Letters, 2013, 111(17): 175502. doi: 10.1103/PhysRevLett.111.175502
    [4]
    ADELEKE A A, GRESCHNER M J, MAJUMDAR A, et al. Single-bonded allotrope of nitrogen predicted at high pressure [J]. Physical Review B, 2017, 96(22): 224104. doi: 10.1103/PhysRevB.96.224104
    [5]
    LIU S J, ZHAO L, YAO M G, et al. Novel all-nitrogen molecular crystals of aromatic N10 [J]. Advanced Science, 2020, 7(10): 1902320. doi: 10.1002/advs.201902320
    [6]
    LI Y W, FENG X L, LIU H Y, et al. Route to high-energy density polymeric nitrogen t-N via He-N compounds [J]. Nature Communications, 2018, 9(1): 722. doi: 10.1038/s41467-018-03200-4
    [7]
    PICKARD C J, NEEDS R J. High-pressure phases of nitrogen [J]. Physical Review Letters, 2009, 102(12): 125702. doi: 10.1103/PhysRevLett.102.125702
    [8]
    LI Q S, ZHAO J F. Theoretical study of potential energy surfaces for N12 clusters [J]. The Journal of Physical Chemistry A, 2002, 106(21): 5367–5372. doi: 10.1021/jp020110n
    [9]
    HIRSHBERG B, GERBER R B, KRYLOV A I. Calculations predict a stable molecular crystal of N8 [J]. Nature Chemistry, 2014, 6(1): 52–56. doi: 10.1038/nchem.1818
    [10]
    GRESCHNER M J, ZHANG M, MAJUMDAR A, et al. A new allotrope of nitrogen as high-energy density material [J]. The Journal of Physical Chemistry A, 2016, 120(18): 2920–2925. doi: 10.1021/acs.jpca.6b01655
    [11]
    XU Y G, WANG Q, SHEN C, et al. A series of energetic metal pentazolate hydrates [J]. Nature, 2017, 549(7670): 78–81. doi: 10.1038/nature23662
    [12]
    ZHAO L, LIU S J, CHEN Y Z, et al. A novel all-nitrogen molecular crystal N16 as a promising high-energy-density material [J]. Dalton Transactions, 2022, 51(24): 9369–9376. doi: 10.1039/D2DT00820C
    [13]
    BONDARCHUK S V. Bipentazole (N10): a low-energy molecular nitrogen allotrope with high intrinsic stability [J]. The Journal of Physical Chemistry Letters, 2020, 11(14): 5544–5548. doi: 10.1021/acs.jpclett.0c01542
    [14]
    GONCHAROV A F, GREGORYANZ E, MAO H K, et al. Optical evidence for a nonmolecular phase of nitrogen above 150 GPa [J]. Physical Review Letters, 2000, 85(6): 1262–1265. doi: 10.1103/PhysRevLett.85.1262
    [15]
    ZENG G Y, QI X F, LIU X B, et al. Advances in disruptive technologies of ultrahigh-energetic materials [J]. Journal of Physics: Conference Series, 2021, 1721: 012009. doi: 10.1088/1742-6596/1721/1/012009
    [16]
    MAILHIOT C, YANG L H, MCMAHAN A K. Polymeric nitrogen [J]. Physical Review B, 1992, 46(22): 14419–14435. doi: 10.1103/PhysRevB.46.14419
    [17]
    MARTIN R M, NEEDS R J. Theoretical study of the molecular-to-nonmolecular transformation of nitrogen at high pressures [J]. Physical Review B, 1986, 34(8): 5082–5092. doi: 10.1103/PhysRevB.34.5082
    [18]
    LEWIS S P, COHEN M L. High-pressure atomic phases of solid nitrogen [J]. Physical Review B, 1992, 46(17): 11117–11120. doi: 10.1103/PhysRevB.46.11117
    [19]
    MA Y M, OGANOV A R, LI Z W, et al. Novel high pressure structures of polymeric nitrogen [J]. Physical Review Letters, 2009, 102(6): 065501. doi: 10.1103/PhysRevLett.102.065501
    [20]
    WANG X L, WANG Y C, MIAO M S, et al. Cagelike diamondoid nitrogen at high pressures [J]. Physical Review Letters, 2012, 109(17): 175502. doi: 10.1103/PhysRevLett.109.175502
    [21]
    EREMETS M I, GAVRILIUK A G, TROJAN I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Materials, 2004, 3(8): 558–563. doi: 10.1038/nmat1146
    [22]
    TOMASINO D, KIM M, SMITH J, et al. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity [J]. Physical Review Letters, 2014, 113(20): 205502. doi: 10.1103/PhysRevLett.113.205502
    [23]
    LANIEL D, WINKLER B, FEDOTENKO T, et al. High-pressure polymeric nitrogen allotrope with the black phosphorus structure [J]. Physical Review Letters, 2020, 124(21): 216001. doi: 10.1103/PhysRevLett.124.216001
    [24]
    JI C, ADELEKE A A, YANG L X, et al. Nitrogen in black phosphorus structure [J]. Science Advances, 2020, 6(23): eaba9206. doi: 10.1126/sciadv.aba9206
    [25]
    LANIEL D, GENESTE G, WECK G, et al. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa [J]. Physical Review Letters, 2019, 122(6): 066001. doi: 10.1103/PhysRevLett.122.066001
    [26]
    LANIEL D, WECK G, GAIFFE G, et al. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions [J]. The Journal of Physical Chemistry Letters, 2018, 9(7): 1600–1604. doi: 10.1021/acs.jpclett.8b00540
    [27]
    STEELE B A, STAVROU E, CROWHURST J C, et al. High-pressure synthesis of a pentazolate salt [J]. Chemistry of Materials, 2017, 29(2): 735–741. doi: 10.1021/acs.chemmater.6b04538
    [28]
    LANIEL D, WINKLER B, KOEMETS E, et al. Synthesis of magnesium-nitrogen salts of polynitrogen anions [J]. Nature Communications, 2019, 10(1): 4515. doi: 10.1038/s41467-019-12530-w
    [29]
    WANG Y, BYKOV M, CHEPKASOV I, et al. Stabilization of hexazine rings in potassium polynitride at high pressure [J]. Nature Chemistry, 2022, 14(7): 794–800. doi: 10.1038/s41557-022-00925-0
    [30]
    BYKOV M, BYKOVA E, PONOMAREVA A V, et al. Stabilization of polynitrogen anions in tantalum-nitrogen compounds at high pressure [J]. Angewandte Chemie International Edition, 2021, 60(16): 9003–9008. doi: 10.1002/anie.202100283
    [31]
    SALKE N P, XIA K, FU S Y, et al. Tungsten hexanitride with single-bonded armchairlike hexazine structure at high pressure [J]. Physical Review Letters, 2021, 126(6): 065702. doi: 10.1103/PhysRevLett.126.065702
    [32]
    BYKOV M, BYKOVA E, KOEMETS E, et al. High-pressure synthesis of a nitrogen-rich inclusion compound ReN8·xN2 with conjugated polymeric nitrogen chains [J]. Angewandte Chemie International Edition, 2018, 57(29): 9048–9053. doi: 10.1002/anie.201805152
    [33]
    BYKOV M, CHARITON S, BYKOVA E, et al. High-pressure synthesis of metal-inorganic frameworks Hf4N20·N2, WN8·N2, and Os5N28·3N2 with polymeric nitrogen linkers [J]. Angewandte Chemie International Edition, 2020, 59(26): 10321–10326. doi: 10.1002/anie.202002487
    [34]
    BYKOV M, BYKOVA E, APRILIS G, et al. Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains [J]. Nature Communications, 2018, 9(1): 2756. doi: 10.1038/s41467-018-05143-2
    [35]
    ASLANDUKOV A, TRYBEL F, ASLANDUKOVA A, et al. Anionic N18 macrocycles and a polynitrogen double helix in novel yttrium polynitrides YN6 and Y2N11 at 100 GPa [J]. Angewandte Chemie International Edition, 2022, 61(34): e202207469. doi: 10.1002/anie.202207469
    [36]
    BYKOV M, FEDOTENKO T, CHARITON S, et al. High-pressure synthesis of Dirac materials: layered van der Waals bonded BeN4 polymorph [J]. Physical Review Letters, 2021, 126(17): 175501. doi: 10.1103/PhysRevLett.126.175501
    [37]
    SUI M H, LIU S, WANG P, et al. High-pressure synthesis of fully sp2-hybridized polymeric nitrogen layer in potassium supernitride [J]. Science Bulletin, 2023, 68(14): 1505–1513. doi: 10.1016/j.scib.2023.06.029
    [38]
    ZHAI H, XU R, DAI J H, et al. Stabilized nitrogen framework anions in the Ga-N system [J]. Journal of the American Chemical Society, 2022, 144(47): 21640–21647. doi: 10.1021/jacs.2c09056
    [39]
    PRINGLE G E, NOAKES D E. The crystal structures of lithium, sodium and strontium azides [J]. Acta Crystallographica Section B, 1968, 24(2): 262–269. doi: 10.1107/S0567740868002062
    [40]
    MEDVEDEV S A, TROJAN I A, EREMETS M I, et al. Phase stability of lithium azide at pressures up to 60 GPa [J]. Journal of Physics: Condensed Matter, 2009, 21(19): 195404. doi: 10.1088/0953-8984/21/19/195404
    [41]
    ZHANG M G, YAN H Y, WEI Q, et al. Novel high-pressure phase with pseudo-benzene “N6” molecule of LiN3 [J]. Europhysics Letters, 2013, 101(2): 26004. doi: 10.1209/0295-5075/101/26004
    [42]
    WANG X L, LI J F, BOTANA J, et al. Polymerization of nitrogen in lithium azide [J]. The Journal of Chemical Physics, 2013, 139(16): 164710. doi: 10.1063/1.4826636
    [43]
    EREMETS M I, POPOV M Y, TROJAN I A, et al. Polymerization of nitrogen in sodium azide [J]. The Journal of Chemical Physics, 2004, 120(22): 10618–10623. doi: 10.1063/1.1718250
    [44]
    ZHU H Y, ZHANG F X, JI C, et al. Pressure-induced series of phase transitions in sodium azide [J]. Journal of Applied Physics, 2013, 113(3): 033511. doi: 10.1063/1.4776235
    [45]
    ZHANG M G, YIN K T, ZHANG X X, et al. Structural and electronic properties of sodium azide at high pressure: a first principles study [J]. Solid State Communications, 2013, 161: 13–18. doi: 10.1016/j.ssc.2013.01.032
    [46]
    ZHANG J, ZENG Z, LIN H Q, et al. Pressure-induced planar N6 rings in potassium azide [J]. Scientific Reports, 2014, 4(1): 4358. doi: 10.1038/srep04358
    [47]
    WANG X L, LI J F, XU N, et al. Layered polymeric nitrogen in RbN3 at high pressures [J]. Scientific Reports, 2015, 5(1): 16677. doi: 10.1038/srep16677
    [48]
    ZHANG M G, YAN H Y, WEI Q, et al. A new high-pressure polymeric nitrogen phase in potassium azide [J]. RSC Advances, 2015, 5(16): 11825–11830. doi: 10.1039/C4RA15699D
    [49]
    WANG X L, LI J F, ZHU H Y, et al. Polymerization of nitrogen in cesium azide under modest pressure [J]. The Journal of Chemical Physics, 2014, 141(4): 044717. doi: 10.1063/1.4891367
    [50]
    PENG F, YAO Y S, LIU H Y, et al. Crystalline LiN5 predicted from first-principles as a possible high-energy material [J]. The Journal of Physical Chemistry Letters, 2015, 6(12): 2363–2366. doi: 10.1021/acs.jpclett.5b00995
    [51]
    STEELE B A, OLEYNIK I I. Sodium pentazolate: a nitrogen rich high energy density material [J]. Chemical Physics Letters, 2016, 643: 21–26. doi: 10.1016/j.cplett.2015.11.008
    [52]
    STEELE B A, OLEYNIK I I. Novel potassium polynitrides at high pressures [J]. The Journal of Physical Chemistry A, 2017, 121(46): 8955–8961. doi: 10.1021/acs.jpca.7b08974
    [53]
    WILLIAMS A S, STEELE B A, OLEYNIK I I. Novel rubidium poly-nitrogen materials at high pressure [J]. The Journal of Chemical Physics, 2017, 147(23): 234701. doi: 10.1063/1.5004416
    [54]
    ZHANG S T, ZHAO Z Y, LIU L L, et al. Pressure-induced stable BeN4 as a high-energy density material [J]. Journal of Power Sources, 2017, 365: 155–161. doi: 10.1016/j.jpowsour.2017.08.086
    [55]
    ZHANG X J, XIE X, DONG H F, et al. Pressure-induced high-energy-density BeN4 materials with nitrogen chains: first-principles study [J]. The Journal of Physical Chemistry C, 2021, 125(46): 25376–25382. doi: 10.1021/acs.jpcc.1c07500
    [56]
    YU S Y, HUANG B W, ZENG Q F, et al. Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium-nitrogen Mg xN y phases under high pressure [J]. The Journal of Physical Chemistry C, 2017, 121(21): 11037–11046. doi: 10.1021/acs.jpcc.7b00474
    [57]
    BRAUN C, BÖRGER S L, BOYKO T D, et al. Ca3N2 and Mg3N2: unpredicted high-pressure behavior of binary nitrides [J]. Journal of the American Chemical Society, 2011, 133(12): 4307–4315. doi: 10.1021/ja106459e
    [58]
    KEVE E T, SKAPSKI A C. Crystal structure of dicalcium nitride [J]. Inorganic Chemistry, 1968, 7(9): 1757–1761. doi: 10.1021/ic50067a014
    [59]
    SCHNEIDER S B, FRANKOVSKY R, SCHNICK W. Synthesis of alkaline earth diazenides MAEN2 (MAE = Ca, Sr, Ba) by controlled thermal decomposition of azides under high pressure [J]. Inorganic Chemistry, 2012, 51(4): 2366–2373. doi: 10.1021/ic2023677
    [60]
    ZHU S S, PENG F, LIU H Y, et al. Stable calcium nitrides at ambient and high pressures [J]. Inorganic Chemistry, 2016, 55(15): 7550–7555. doi: 10.1021/acs.inorgchem.6b00948
    [61]
    XIA K, ZHENG X X, YUAN J A, et al. Pressure-stabilized high-energy-density alkaline-earth-metal pentazolate salts [J]. The Journal of Physical Chemistry C, 2019, 123(16): 10205–10211. doi: 10.1021/acs.jpcc.8b12527
    [62]
    YUAN J N, XIA K, WU J F, et al. High-energy-density pentazolate salts: CaN10 and BaN10 [J]. Science China Physics, Mechanics & Astronomy, 2021, 64(1): 218211.
    [63]
    LIU Z, LIU Y, LI D, et al. Insights into antibonding induced energy density enhancement and exotic electronic properties for germanium nitrides at modest pressures [J]. Inorganic Chemistry, 2018, 57(16): 10416–10423. doi: 10.1021/acs.inorgchem.8b01669
    [64]
    LIU Z, LI D, WEI S L, et al. Bonding properties of aluminum nitride at high pressure [J]. Inorganic Chemistry, 2017, 56(13): 7494–7500. doi: 10.1021/acs.inorgchem.7b00980
    [65]
    WANG B S, LARHLIMI R, VALENCIA H, et al. Prediction of novel tin nitride Sn xN y phases under pressure [J]. The Journal of Physical Chemistry C, 2020, 124(15): 8080–8093. doi: 10.1021/acs.jpcc.9b11404
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(427) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return