Citation: | MA Hao, CHEN Ling, JIANG Qiwen, AN Decheng, DUAN Defang. Ab Initio Calculation Principles Study of Crystal Structure and Superconducting Properties of Y-Si-H System under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020106. doi: 10.11858/gywlxb.20230791 |
[1] |
COOPER L N. Microscopic quantum interference in the theory of superconductivity [J]. Science, 1973, 181(4103): 908–916. doi: 10.1126/science.181.4103.908
|
[2] |
WIGNER E, HUNTINGTON H B. On the possibility of a metallic modification of hydrogen [J]. The Journal of Chemical Physics, 1935, 3(12): 764–770. doi: 10.1063/1.1749590
|
[3] |
DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715–718. doi: 10.1126/science.aal1579
|
[4] |
ASHCROFT N W. Hydrogen dominant metallic alloys: high temperature superconductors? [J]. Physical Review Letters, 2004, 92(18): 187002. doi: 10.1103/PhysRevLett.92.187002
|
[5] |
赵文迪, 段德芳, 崔田. 高压下氢基高温超导体研究的新进展 [J]. 高压物理学报, 2021, 35(2): 020101. doi: 10.11858/gywlxb.20210727
ZHAO W D, DUAN D F, CUI T. New developments of hydrogen-based high-temperature superconductors under high pressure [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 020101. doi: 10.11858/gywlxb.20210727
|
[6] |
DUAN D F, LIU Y X, TIAN F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high- Tc superconductivity [J]. Scientific Reports, 2014, 4(1): 6968. doi: 10.1038/srep06968
|
[7] |
DUAN D F, HUANG X L, TIAN F B, et al. Pressure-induced decomposition of solid hydrogen sulfide [J]. Physical Review B, 2015, 91(18): 180502. doi: 10.1103/PhysRevB.91.180502
|
[8] |
BERNSTEIN N, HELLBERG C S, JOHANNES M D, et al. What superconducts in sulfur hydrides under pressure and why [J]. Physical Review B, 2015, 91(6): 060511. doi: 10.1103/PhysRevB.91.060511
|
[9] |
DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964
|
[10] |
EINAGA M, SAKATA M, ISHIKAWA T, et al. Crystal structure of the superconducting phase of sulfur hydride [J]. Nature Physics, 2016, 12(9): 835–838. doi: 10.1038/nphys3760
|
[11] |
LIU H Y, NAUMOV I I, HOFFMANN R, et al. Potential high- Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6990–6995.
|
[12] |
PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001
|
[13] |
WANG C Z, YI S, CHO J H. Pressure dependence of the superconducting transition temperature of compressed LaH10 [J]. Physical Review B, 2019, 100(6): 060502. doi: 10.1103/PhysRevB.100.060502
|
[14] |
HONG F, YANG L X, SHAN P F, et al. Superconductivity of lanthanum superhydride investigated using the standard four-probe configuration under high pressures [J]. Chinese Physics Letters, 2020, 37(10): 107401. doi: 10.1088/0256-307X/37/10/107401
|
[15] |
KRUGLOV I A, SEMENOK D V, SONG H, et al. Superconductivity of LaH10 and LaH16 polyhydrides [J]. Physical Review B, 2020, 101(2): 024508. doi: 10.1103/PhysRevB.101.024508
|
[16] |
DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
|
[17] |
SOMAYAZULU M, AHART M, MISHRA A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures [J]. Physical Review Letters, 2019, 122(2): 027001. doi: 10.1103/PhysRevLett.122.027001
|
[18] |
MA L, WANG K, XIE Y, et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa [J]. Physical Review Letters, 2022, 128(16): 167001. doi: 10.1103/PhysRevLett.128.167001
|
[19] |
KONG P P, MINKOV V S, KUZOVNIKOV M A, et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure [J]. Nature Communications, 2021, 12(1): 5075. doi: 10.1038/s41467-021-25372-2
|
[20] |
SNIDER E, DASENBROCK-GAMMON N, MCBRIDE R, et al. Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures [J]. Physical Review Letters, 2021, 126(11): 117003. doi: 10.1103/PhysRevLett.126.117003
|
[21] |
XIE H, YAO YS, FENG X L, et al. Hydrogen pentagraphenelike structure stabilized by hafnium: a high-temperature conventional superconductor [J]. Physical Review Letters, 2020, 125(21): 217001. doi: 10.1103/PhysRevLett.125.217001
|
[22] |
WANG H, YAO Y S, PENG F, et al. Quantum and classical proton diffusion in superconducting clathrate hydrides [J]. Physical Review Letters, 2021, 126(11): 117002. doi: 10.1103/PhysRevLett.126.117002
|
[23] |
SUN Y, LV J, XIE Y, et al. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure [J]. Physical Review Letters 2019, 123(9): 097001.
|
[24] |
ZHANG Z H, CUI T, HUTCHEON M J, et al. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure [J]. Physical Review Letters, 2022, 128(4): 047001. doi: 10.1103/PhysRevLett.128.047001
|
[25] |
SONG Y G, BI J K, NAKAMOTO Y, et al. Stoichiometric ternary superhydride LaBeH8 as a new template for high-temperature superconductivity at 110 K under 80 GPa [J]. Physical Review Letters, 2023, 130(26): 266001. doi: 10.1103/PhysRevLett.130.266001
|
[26] |
GAO M, YAN X W, LU Z Y, et al. Phonon-mediated high-temperature superconductivity in the ternary borohydride KB2H8 under pressure near 12 GPa [J]. Physical Review B, 2021, 104(10): L100504. doi: 10.1103/PhysRevB.104.L100504
|
[27] |
BI J K, NAKAMOTO Y, ZHANG P Y, et al. Giant enhancement of superconducting critical temperature in substitutional alloy (La, Ce)H9 [J]. Nature Communications, 2022, 13(1): 5952. doi: 10.1038/s41467-022-33743-6
|
[28] |
CHEN S, QIAN Y C, HUANG X L, et al. High-temperature superconductivity up to 223 K in the Al stabilized metastable hexagonal lanthanum superhydride [J]. National Science Review, 2024, 11(1): nwad107.
|
[29] |
ZHANG J R, CHEN G, LIU H Y. Stable structures and superconductivity in a Y-Si system under high pressure [J]. The Journal of Physical Chemistry Letters, 2021, 12(42): 10388–10393. doi: 10.1021/acs.jpclett.1c02853
|
[30] |
PICKARD C J, NEEDS R J. Ab initio random structure searching [J]. Journal of Physics: Condensed Matter, 2011, 23(5): 053201.
|
[31] |
PICKARD C J, NEEDS R J. High-pressure phases of silane [J]. Physical Review Letters, 2006, 97(4): 045504. doi: 10.1103/PhysRevLett.97.045504
|
[32] |
CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP [J]. Zeitschrift für Kristallographie−Crystalline Materials, 2005, 220(5/6): 567–570.
|
[33] |
KRESSE G, HAFNER J. Ab initio molecular dynamics for open-shell transition metals [J]. Physical Review B, 1993, 48(17): 13115. doi: 10.1103/PhysRevB.48.13115
|
[34] |
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
|
[35] |
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
|
[36] |
GAO H, WANG J J, HAN Y, et al. Enhancing crystal structure prediction by decomposition and evolution schemes based on graph theory [J]. Fundamental Research, 2021, 1(4): 466–471. doi: 10.1016/j.fmre.2021.06.005
|
[37] |
XIA K, GAO H, LIU C, et al. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search [J]. Science Bulletin, 2018, 63(13): 817–824. doi: 10.1016/j.scib.2018.05.027
|
[38] |
VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41(11): 7892–7895. doi: 10.1103/PhysRevB.41.7892
|
[39] |
BARONI S, DE GIRONCOLI S, DAL CORSO A, et al. Phonons and related crystal properties from density-functional perturbation theory [J]. Reviews of Modern Physics, 2001, 73(2): 515–562. doi: 10.1103/RevModPhys.73.515
|
[40] |
GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J]. Journal of Physics: Condensed Matter, 2009, 21(39): 395502. doi: 10.1088/0953-8984/21/39/395502
|
[41] |
VIKRAM, SAHNI B, BARMAN C K, et al. Reply to “comment on ‘accelerated discovery of new 8-electron half-heusler compounds as promising energy and topological quantum materials’” [J]. The Journal of Physical Chemistry C, 2020, 124(3): 2245–2246. doi: 10.1021/acs.jpcc.9b12014
|
[42] |
XIAO H, DAN Y, SUO B B, et al. Comment on “accelerated discovery of new 8-electron half-heusler compounds as promising energy and topological quantum materials” [J]. The Journal of Physical Chemistry C, 2020, 124(3): 2247–2249. doi: 10.1021/acs.jpcc.9b10295
|
[43] |
CHEN M W, YING P, LIU C. Research progress of high hardness B-C-O compounds [J]. International Journal of Refractory Metals and Hard Materials, 2023, 111: 106086. doi: 10.1016/j.ijrmhm.2022.106086
|
[44] |
LIU C, LIU L Y, YING P. Stability, deformation, physical properties of novel hard B2CO phases [J]. Journal of Materials Science, 2022, 57(20): 9231–9245. doi: 10.1007/s10853-022-07242-4
|
[45] |
QUAN Y D, LEE K W, PICKETT W E. MoB2 under pressure: superconducting Mo enhanced by boron [J]. Physical Review B, 2021, 104(22): 224504. doi: 10.1103/PhysRevB.104.224504
|
[46] |
PEI C Y, ZHANG J F, WANG Q, et al. Pressure-induced superconductivity at 32 K in MoB2 [J]. National Science Review, 2023, 10(5): nwad034. doi: 10.1093/nsr/nwad034
|
[47] |
ALLEN P B, DYNES R. Transition temperature of strong-coupled superconductors reanalyzed [J]. Physical Review B, 1975, 12(3): 905. doi: 10.1103/PhysRevB.12.905
|
[48] |
刘超, 应盼. 压力和碳含量调控BCxO化合物物理性质的机理研究 [J]. 高压物理学报, 2021, 35(6): 061101.
LIU C, YING P. Mechanism of pressure and carbon content regulating physical properties of BCxO compounds [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 061101.
|
[49] |
MOUHAT F, COUDERT F X. Necessary and sufficient elastic stability conditions in various crystal systems [J]. Physical Review B, 2014, 90(22): 224104. doi: 10.1103/PhysRevB.90.224104
|