Volume 38 Issue 2
Apr 2024
Turn off MathJax
Article Contents
MA Hao, CHEN Ling, JIANG Qiwen, AN Decheng, DUAN Defang. Ab Initio Calculation Principles Study of Crystal Structure and Superconducting Properties of Y-Si-H System under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020106. doi: 10.11858/gywlxb.20230791
Citation: MA Hao, CHEN Ling, JIANG Qiwen, AN Decheng, DUAN Defang. Ab Initio Calculation Principles Study of Crystal Structure and Superconducting Properties of Y-Si-H System under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020106. doi: 10.11858/gywlxb.20230791

Ab Initio Calculation Principles Study of Crystal Structure and Superconducting Properties of Y-Si-H System under High Pressure

doi: 10.11858/gywlxb.20230791
  • Received Date: 10 Nov 2023
  • Rev Recd Date: 17 Dec 2023
  • Accepted Date: 18 Dec 2023
  • Available Online: 11 Apr 2024
  • Issue Publish Date: 09 Apr 2024
  • Using first principles density functional theory calculations, the crystal structure, electronic properties, and superconductivity characteristics of the ternary hydride Y-Si-H system under high pressure were investigated. The study revealed the existence of thermodynamically stable phases, including YSiH7, YSiH9, YSi2H12, and YSiH18, and thermodynamically metastable phases, namely YSi2H13, YSi2H14, and Y2SiH17. Electronic properties calculations showed that YSiH7 is insulator and YSi2H13 is semiconductor, while the remaining hydrides exhibit metallic properties. Superconducting transition temperatures (Tc) were estimated using the McMillan equation, with YSi2H12 hosting the highest Tc of 43.5 K at 100 GPa. The dynamic stable pressure of YSi2H14 can be reduced to 40 GPa, and its Tc is 23.8 K which is twice the highest Tc among binary Y-Si compounds, indicating that introducing H atom into Y-Si system can effectively increase the superconducting transition temperature. Y2SiH17 exhibits a Tc of 35.8 K at 100 GPa. Spectral function and electron-phonon coupling calculations suggested that in YSi2H14 and Y2SiH17, in addition to the H-induced superconductivity from mid-frequency vibrations, low-frequency vibrations of Y also play a significant role for superconductivity.

     

  • loading
  • [1]
    COOPER L N. Microscopic quantum interference in the theory of superconductivity [J]. Science, 1973, 181(4103): 908–916. doi: 10.1126/science.181.4103.908
    [2]
    WIGNER E, HUNTINGTON H B. On the possibility of a metallic modification of hydrogen [J]. The Journal of Chemical Physics, 1935, 3(12): 764–770. doi: 10.1063/1.1749590
    [3]
    DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715–718. doi: 10.1126/science.aal1579
    [4]
    ASHCROFT N W. Hydrogen dominant metallic alloys: high temperature superconductors? [J]. Physical Review Letters, 2004, 92(18): 187002. doi: 10.1103/PhysRevLett.92.187002
    [5]
    赵文迪, 段德芳, 崔田. 高压下氢基高温超导体研究的新进展 [J]. 高压物理学报, 2021, 35(2): 020101. doi: 10.11858/gywlxb.20210727

    ZHAO W D, DUAN D F, CUI T. New developments of hydrogen-based high-temperature superconductors under high pressure [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 020101. doi: 10.11858/gywlxb.20210727
    [6]
    DUAN D F, LIU Y X, TIAN F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high- Tc superconductivity [J]. Scientific Reports, 2014, 4(1): 6968. doi: 10.1038/srep06968
    [7]
    DUAN D F, HUANG X L, TIAN F B, et al. Pressure-induced decomposition of solid hydrogen sulfide [J]. Physical Review B, 2015, 91(18): 180502. doi: 10.1103/PhysRevB.91.180502
    [8]
    BERNSTEIN N, HELLBERG C S, JOHANNES M D, et al. What superconducts in sulfur hydrides under pressure and why [J]. Physical Review B, 2015, 91(6): 060511. doi: 10.1103/PhysRevB.91.060511
    [9]
    DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964
    [10]
    EINAGA M, SAKATA M, ISHIKAWA T, et al. Crystal structure of the superconducting phase of sulfur hydride [J]. Nature Physics, 2016, 12(9): 835–838. doi: 10.1038/nphys3760
    [11]
    LIU H Y, NAUMOV I I, HOFFMANN R, et al. Potential high- Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6990–6995.
    [12]
    PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001
    [13]
    WANG C Z, YI S, CHO J H. Pressure dependence of the superconducting transition temperature of compressed LaH10 [J]. Physical Review B, 2019, 100(6): 060502. doi: 10.1103/PhysRevB.100.060502
    [14]
    HONG F, YANG L X, SHAN P F, et al. Superconductivity of lanthanum superhydride investigated using the standard four-probe configuration under high pressures [J]. Chinese Physics Letters, 2020, 37(10): 107401. doi: 10.1088/0256-307X/37/10/107401
    [15]
    KRUGLOV I A, SEMENOK D V, SONG H, et al. Superconductivity of LaH10 and LaH16 polyhydrides [J]. Physical Review B, 2020, 101(2): 024508. doi: 10.1103/PhysRevB.101.024508
    [16]
    DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
    [17]
    SOMAYAZULU M, AHART M, MISHRA A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures [J]. Physical Review Letters, 2019, 122(2): 027001. doi: 10.1103/PhysRevLett.122.027001
    [18]
    MA L, WANG K, XIE Y, et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa [J]. Physical Review Letters, 2022, 128(16): 167001. doi: 10.1103/PhysRevLett.128.167001
    [19]
    KONG P P, MINKOV V S, KUZOVNIKOV M A, et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure [J]. Nature Communications, 2021, 12(1): 5075. doi: 10.1038/s41467-021-25372-2
    [20]
    SNIDER E, DASENBROCK-GAMMON N, MCBRIDE R, et al. Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures [J]. Physical Review Letters, 2021, 126(11): 117003. doi: 10.1103/PhysRevLett.126.117003
    [21]
    XIE H, YAO YS, FENG X L, et al. Hydrogen pentagraphenelike structure stabilized by hafnium: a high-temperature conventional superconductor [J]. Physical Review Letters, 2020, 125(21): 217001. doi: 10.1103/PhysRevLett.125.217001
    [22]
    WANG H, YAO Y S, PENG F, et al. Quantum and classical proton diffusion in superconducting clathrate hydrides [J]. Physical Review Letters, 2021, 126(11): 117002. doi: 10.1103/PhysRevLett.126.117002
    [23]
    SUN Y, LV J, XIE Y, et al. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure [J]. Physical Review Letters 2019, 123(9): 097001.
    [24]
    ZHANG Z H, CUI T, HUTCHEON M J, et al. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure [J]. Physical Review Letters, 2022, 128(4): 047001. doi: 10.1103/PhysRevLett.128.047001
    [25]
    SONG Y G, BI J K, NAKAMOTO Y, et al. Stoichiometric ternary superhydride LaBeH8 as a new template for high-temperature superconductivity at 110 K under 80 GPa [J]. Physical Review Letters, 2023, 130(26): 266001. doi: 10.1103/PhysRevLett.130.266001
    [26]
    GAO M, YAN X W, LU Z Y, et al. Phonon-mediated high-temperature superconductivity in the ternary borohydride KB2H8 under pressure near 12 GPa [J]. Physical Review B, 2021, 104(10): L100504. doi: 10.1103/PhysRevB.104.L100504
    [27]
    BI J K, NAKAMOTO Y, ZHANG P Y, et al. Giant enhancement of superconducting critical temperature in substitutional alloy (La, Ce)H9 [J]. Nature Communications, 2022, 13(1): 5952. doi: 10.1038/s41467-022-33743-6
    [28]
    CHEN S, QIAN Y C, HUANG X L, et al. High-temperature superconductivity up to 223 K in the Al stabilized metastable hexagonal lanthanum superhydride [J]. National Science Review, 2024, 11(1): nwad107.
    [29]
    ZHANG J R, CHEN G, LIU H Y. Stable structures and superconductivity in a Y-Si system under high pressure [J]. The Journal of Physical Chemistry Letters, 2021, 12(42): 10388–10393. doi: 10.1021/acs.jpclett.1c02853
    [30]
    PICKARD C J, NEEDS R J. Ab initio random structure searching [J]. Journal of Physics: Condensed Matter, 2011, 23(5): 053201.
    [31]
    PICKARD C J, NEEDS R J. High-pressure phases of silane [J]. Physical Review Letters, 2006, 97(4): 045504. doi: 10.1103/PhysRevLett.97.045504
    [32]
    CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP [J]. Zeitschrift für Kristallographie−Crystalline Materials, 2005, 220(5/6): 567–570.
    [33]
    KRESSE G, HAFNER J. Ab initio molecular dynamics for open-shell transition metals [J]. Physical Review B, 1993, 48(17): 13115. doi: 10.1103/PhysRevB.48.13115
    [34]
    KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [35]
    KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
    [36]
    GAO H, WANG J J, HAN Y, et al. Enhancing crystal structure prediction by decomposition and evolution schemes based on graph theory [J]. Fundamental Research, 2021, 1(4): 466–471. doi: 10.1016/j.fmre.2021.06.005
    [37]
    XIA K, GAO H, LIU C, et al. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search [J]. Science Bulletin, 2018, 63(13): 817–824. doi: 10.1016/j.scib.2018.05.027
    [38]
    VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41(11): 7892–7895. doi: 10.1103/PhysRevB.41.7892
    [39]
    BARONI S, DE GIRONCOLI S, DAL CORSO A, et al. Phonons and related crystal properties from density-functional perturbation theory [J]. Reviews of Modern Physics, 2001, 73(2): 515–562. doi: 10.1103/RevModPhys.73.515
    [40]
    GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J]. Journal of Physics: Condensed Matter, 2009, 21(39): 395502. doi: 10.1088/0953-8984/21/39/395502
    [41]
    VIKRAM, SAHNI B, BARMAN C K, et al. Reply to “comment on ‘accelerated discovery of new 8-electron half-heusler compounds as promising energy and topological quantum materials’” [J]. The Journal of Physical Chemistry C, 2020, 124(3): 2245–2246. doi: 10.1021/acs.jpcc.9b12014
    [42]
    XIAO H, DAN Y, SUO B B, et al. Comment on “accelerated discovery of new 8-electron half-heusler compounds as promising energy and topological quantum materials” [J]. The Journal of Physical Chemistry C, 2020, 124(3): 2247–2249. doi: 10.1021/acs.jpcc.9b10295
    [43]
    CHEN M W, YING P, LIU C. Research progress of high hardness B-C-O compounds [J]. International Journal of Refractory Metals and Hard Materials, 2023, 111: 106086. doi: 10.1016/j.ijrmhm.2022.106086
    [44]
    LIU C, LIU L Y, YING P. Stability, deformation, physical properties of novel hard B2CO phases [J]. Journal of Materials Science, 2022, 57(20): 9231–9245. doi: 10.1007/s10853-022-07242-4
    [45]
    QUAN Y D, LEE K W, PICKETT W E. MoB2 under pressure: superconducting Mo enhanced by boron [J]. Physical Review B, 2021, 104(22): 224504. doi: 10.1103/PhysRevB.104.224504
    [46]
    PEI C Y, ZHANG J F, WANG Q, et al. Pressure-induced superconductivity at 32 K in MoB2 [J]. National Science Review, 2023, 10(5): nwad034. doi: 10.1093/nsr/nwad034
    [47]
    ALLEN P B, DYNES R. Transition temperature of strong-coupled superconductors reanalyzed [J]. Physical Review B, 1975, 12(3): 905. doi: 10.1103/PhysRevB.12.905
    [48]
    刘超, 应盼. 压力和碳含量调控BCxO化合物物理性质的机理研究 [J]. 高压物理学报, 2021, 35(6): 061101.

    LIU C, YING P. Mechanism of pressure and carbon content regulating physical properties of BCxO compounds [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 061101.
    [49]
    MOUHAT F, COUDERT F X. Necessary and sufficient elastic stability conditions in various crystal systems [J]. Physical Review B, 2014, 90(22): 224104. doi: 10.1103/PhysRevB.90.224104
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(196) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return