Volume 38 Issue 3
Jun 2024
Turn off MathJax
Article Contents
SUN Jiacheng, CHEN Xiping, XIE Lei, FANG Leiming. Application of the High-Pressure Neutron Diffractometer at CMRR in Materials Research[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030111. doi: 10.11858/gywlxb.20230790
Citation: SUN Jiacheng, CHEN Xiping, XIE Lei, FANG Leiming. Application of the High-Pressure Neutron Diffractometer at CMRR in Materials Research[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030111. doi: 10.11858/gywlxb.20230790

Application of the High-Pressure Neutron Diffractometer at CMRR in Materials Research

doi: 10.11858/gywlxb.20230790
  • Received Date: 10 Nov 2023
  • Rev Recd Date: 17 Nov 2023
  • Available Online: 21 May 2024
  • Issue Publish Date: 03 Jun 2024
  • High pressure neutron diffractometer (HPND), also known as FENGHUANG, at China Mianyang Research Reactor’s (CMRR) neutron science platform, which include neutron focusing system, detector system, high-pressure devices and integrated system, can be constructed to in situ neutron diffraction experiments under ambient, high/low temperature, and high-pressure conditions. For in situ high-pressure neutron diffraction experiments, the pressure can reach to over 30 GPa at room temperature, and 10 GPa at 2000 K. FENGHUANG diffractometer has been widely applied in the field of materials researches, to provide precise information on atomic occupation, magnetic structure, crystalline structure and phase transitions, such as transition-metal nitrides, Li-containing materials, magnetic materials, energetic materials, ferroelectric ceramics.

     

  • loading
  • [1]
    KISI E H, HOWARD C J. Applications of neutron powder diffraction [M]. Oxford: Oxford University Press, 2008.
    [2]
    SHULL C G, STRAUSER W A, WOLLAN E O. Neutron diffraction by paramagnetic and antiferromagnetic substances [J]. Physical Review, 1951, 83(2): 333–345. doi: 10.1103/PhysRev.83.333
    [3]
    GUTHRIE M, BOEHLER R, TULK C A, et al. Neutron diffraction observations of interstitial protons in dense ice [J]. Proceedings of the National Academy of Sciences, 2013, 110(26): 10552–10556. doi: 10.1073/pnas.1309277110
    [4]
    孙光爱, 刘栋, 龚建, 等. 中国绵阳研究堆CMRR中子散射平台及应用 [J]. 中国科学: 物理学 力学 天文学, 2021, 51(9): 092009.

    SUN G A, LIU D, GONG J, et al. The neutron scattering platform of China Mianyang Research Reactor (CMRR) and recent applications [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2021, 51(9): 092009.
    [5]
    SUN G A, ZHANG C S, CHEN B, et al. A new operating neutron scattering facility CMRR in China [J]. Neutron News, 2016, 27(4): 21–26. doi: 10.1080/10448632.2016.1233018
    [6]
    XIE L, CHEN X P, FANG L M, et al. Fenghuang: high-intensity multi-section neutron powder diffractometer at CMRR [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 915: 31–35.
    [7]
    XIA Y H, LI H, CAO X F, et al. Upgrade of Xuanwu: a dual-mode neutron powder diffractometer at CMRR [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1042: 167452.
    [8]
    ZHANG W J, CUI J R, WANG S S, et al. Deforming lanthanum trihydride for superionic conduction [J]. Nature, 2023, 616(7955): 73–76. doi: 10.1038/s41586-023-05815-0
    [9]
    FU Z Q, CHEN X F, NIE H C, et al. Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O3 [J]. Nature Communications, 2022, 13(1): 1390. doi: 10.1038/s41467-022-29079-w
    [10]
    LI T Y, LIU C, SHI P, et al. High-performance strain of lead-free relaxor-ferroelectric piezoceramics by the morphotropic phase boundary modification [J]. Advanced Functional Materials, 2022, 32(32): 2202307. doi: 10.1002/adfm.202202307
    [11]
    ZHU L, WANG Y W, CHEN J C, et al. Enhancing ionic conductivity in solid electrolyte by relocating diffusion ions to under-coordination sites [J]. Science Advances, 2022, 8(11): eabj7698. doi: 10.1126/sciadv.abj7698
    [12]
    FANG L M, CHEN X P, XIE L, et al. The neutron diffraction experiments under high pressure and high temperature on FENGHUANG diffractometer at CMRR [J]. Nuclear Analysis, 2022, 1(3): 100023. doi: 10.1016/j.nucana.2022.100023
    [13]
    房雷鸣, 陈喜平, 谢雷, 等. CMRR中子科学平台的高压中子衍射技术及应用 [J]. 高压物理学报, 2020, 34(5): 050104. doi: 10.11858/gywlxb.20200588

    FANG L M, CHEN X P, XIE L, et al. High pressure neutron diffraction technology and applications at CMRR [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050104. doi: 10.11858/gywlxb.20200588
    [14]
    BULL C L, FUNNELL N P, TUCKER M G, et al. PEARL: the high pressure neutron powder diffractometer at ISIS [J]. High Pressure Research, 2016, 36: 493–511. doi: 10.1080/08957959.2016.1214730
    [15]
    BESSON J M, NELMES R J, HAMEL G, et al. Neutron powder diffraction above 10 GPa [J]. Physica B: Condensed Matter, 1992, 180/181: 907–910. doi: 10.1016/0921-4526(92)90505-M
    [16]
    HATTORI T, SANO-FURUKAWA A, ARIMA H, et al. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 780: 55–67.
    [17]
    ANDERSEN K H, ARGYRIOU D N, JACKSON A J, et al. The instrument suite of the European Spallation Source [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 957: 163402.
    [18]
    BOEHLER R, GUTHRIE M, MOLAISON J J, et al. Large-volume diamond cells for neutron diffraction above 90 GPa [J]. High Pressure Research, 2013, 33(3): 546–554. doi: 10.1080/08957959.2013.823197
    [19]
    MCWHAN D B, BLOCH D, PARISOT G. Apparatus for neutron diffraction at high pressure [J]. Review of Scientific Instruments, 2003, 45(5): 643–646.
    [20]
    KLOTZ S, BESSON J M, HAMEL G, et al. Neutron powder diffraction at pressures beyond 25 GPa [J]. Applied Physics Letters, 1995, 66(14): 1735–1737. doi: 10.1063/1.113350
    [21]
    LE GODEC Y, DOVE M T, REDFERN S A T, et al. Recent developments using the paris-edinburgh cell for neutron diffraction at high pressure and high temperature and some applications [J]. High Pressure Research, 2003, 23(3): 281–287. doi: 10.1080/0895795032000102496
    [22]
    GUTHRIE M. Future directions in high-pressure neutron diffraction [J]. Journal of Physics: Condensed Matter, 2015, 27(15): 153201. doi: 10.1088/0953-8984/27/15/153201
    [23]
    FANG L M, WANG Y, CHEN X P, et al. A pressure calibration method for a portable wide-access “panoramic” cell [J]. Chinese Physics B, 2014, 23(11): 110701. doi: 10.1088/1674-1056/23/11/110701
    [24]
    房雷鸣, 陈喜平, 谢雷, 等. 吉帕压力下原位中子衍射技术及其在铁中的应用 [J]. 高压物理学报, 2016, 30(1): 1–6. doi: 10.11858/gywlxb.2016.01.001

    FANG L M, CHEN X P, XIE L, et al. High pressure in-situ neutron diffraction under gigapascal of iron [J]. Chinese Journal of High Pressure Physics, 2016, 30(1): 1–6. doi: 10.11858/gywlxb.2016.01.001
    [25]
    NI X L, FANG L M, LI X, et al. Neutron diffraction of large-volume samples at high pressure using compact opposed-anvil cells [J]. Chinese Physics Letters, 2018, 35: 040701. doi: 10.1088/0256-307X/35/4/040701
    [26]
    XIANG C J, HU Q W, WANG Q, et al. The design of 2/8-type high-pressure cell applied to in situ neutron diffraction [J]. Chinese Physics B, 2019, 28(7): 070701. doi: 10.1088/1674-1056/28/7/070701
    [27]
    史钰, 陈喜平, 谢雷, 等. 基于巴黎-爱丁堡压机的高压中子衍射技术 [J]. 物理学报, 2019, 68(11): 116101. doi: 10.7498/aps.68.20190179

    SHI Y, CHEN X P, XIE L, et al. High-pressure neutron diffraction techniques based on Paris-Edingburgh press [J]. Acta Physica Sinica, 2019, 68(11): 116101. doi: 10.7498/aps.68.20190179
    [28]
    HU Q W, FANG L M, LI Q, et al. Enhancing the pressure limitation in large-volume Bridgman-anvil cell used for in situ neutron diffraction [J]. High Pressure Research, 2019, 39(4): 655–665. doi: 10.1080/08957959.2019.1666841
    [29]
    江明全, 李欣, 房雷鸣, 等. 基于PE型压机中子衍射高温高压组装的优化设计与实验验证 [J]. 物理学报, 2020, 69(22): 226101. doi: 10.7498/aps.69.20200832

    JIANG M Q, LI X, FANG L M, et al. Optimal design and experimental verification of high-temperature and high-pressure assembly of neutron diffraction based on PE-type press [J]. Acta Physica Sinica, 2020, 69(22): 226101. doi: 10.7498/aps.69.20200832
    [30]
    杨功章, 谢雷, 陈喜平, 等. 巴黎-爱丁堡压机中子衍射高压下温度加载实验 [J]. 物理学报, 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419

    YANG G Z, XIE L, CHEN X P, et al. Experimental study of simultaneous high-temperature and high-pressure assembly of Paris-Edinburgh press for neutron diffraction [J]. Acta Physica Sinica, 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419
    [31]
    高上攀, 雷力, 胡启威, 等. 三元铁基金属氮化物的高压复分解反应合成 [J]. 高压物理学报, 2016, 30(4): 265–270.

    GAO S P, LEI L, HU Q W, et al. High-pressure solid-state metathesis synthesis of ternary iron-based metal nitrides [J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 265–270.
    [32]
    ZHOU X F, XU W W, GUI Z G, et al. Polar nitride perovskite LaWN(3–δ) with orthorhombic structure [J]. Advanced Science, 2023, 10(19): 2205479. doi: 10.1002/advs.202205479
    [33]
    ZHOU X F, GU C, SONG G Z, et al. Synthesis, crystal structures, mechanical properties, and formation mechanisms of cubic tungsten nitrides [J]. Chemistry of Materials, 2022, 34(20): 9261–9269. doi: 10.1021/acs.chemmater.2c02563
    [34]
    LEI L, ZHANG L L, GAO S P, et al. Neutron diffraction study of the structural and magnetic properties of ε-Fe3N1.098 and ε-Fe2.322Co0.678N0.888 [J]. Journal of Alloys and Compounds, 2018, 752: 99–105. doi: 10.1016/j.jallcom.2018.04.143
    [35]
    WU B B, LEI L, ZHANG F, et al. Pressure-induced disordering of site occupation in iron-nickel nitrides [J]. Matter and Radiation at Extremes, 2021, 6(3): 038401. doi: 10.1063/5.0040041
    [36]
    HU Q W, FANG L M, MA S G, et al. Observation of specific optical phonon modes dominating Li ion diffusion in γ-LiAlO2 ceramic [J]. Ceramics International, 2021, 47(13): 17980–17985. doi: 10.1016/j.ceramint.2021.03.112
    [37]
    FENG X Y, WANG C H, PAN H J, et al. Interstitial Li+ and Li+ migrations in the Li2+ xC1– xB xO3 solid electrolyte [J]. The Journal of Physical Chemistry C, 2022, 126(43): 18466–18474. doi: 10.1021/acs.jpcc.2c05189
    [38]
    AHMAD A S, LIANG Y, DONG M, et al. Pressure-driven switching of magnetism in layered CrCl3 [J]. Nanoscale, 2020, 12(45): 22935–22944. doi: 10.1039/D0NR04325G
    [39]
    ZHU X K, LIU H, LIU L, et al. Spin glass state in chemical vapor-deposited crystalline Cr2Se3 nanosheets [J]. Chemistry of Materials, 2021, 33: 3851–3858. doi: 10.1021/acs.chemmater.1c01222
    [40]
    PALMER S J P, FIELD J E, HUNTLEY J M. Deformation, strengths and strains to failure of polymer bonded explosives [J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1993, 440(1909): 399–419.
    [41]
    LI H, LI Y, BAI L F, et al. Acceleration of δ- to β-HMX-D8 phase retransformation with D2O and intergranular strain evolution in a HMX-based polymer-bonded explosive [J]. The Journal of Physical Chemistry C, 2019, 123(12): 6958–6964. doi: 10.1021/acs.jpcc.8b10002
    [42]
    LI H, BAI L F, CHEN X P, et al. Strain-induced structural change and mechanical properties of 1,3,5-triamino-2,4,6-trinitrobenzene probed by neutron diffraction [J]. Bulletin of Materials Science, 2021, 44(1): 53. doi: 10.1007/s12034-020-02339-5
    [43]
    LIU Y, DU H F, FANG L M, et al. Pressure-driven electronic phase transition in the high-pressure phase of nitrogen-rich 1H-tetrazoles [J]. RSC Advances, 2021, 11(35): 21507–21513. doi: 10.1039/D1RA00522G
    [44]
    ZHOU Z Y, GAO Z P, XIONG Z W, et al. Giant power density from BiFeO3-based ferroelectric ceramics by shock compression [J]. Applied Physics Letters, 2022, 121(11): 113903. doi: 10.1063/5.0102102
    [45]
    ZHOU Z Y, FANG L M, XIONG Z W, et al. Phase transition of potassium sodium niobate under high pressures [J]. Applied Physics Letters, 2023, 123(1): 012904. doi: 10.1063/5.0159971
    [46]
    LI Q Z, YANG X X, PENG F, et al. Elasticity, mechanical and thermal properties of submicron h-AlN: in-situ high pressure ultrasonic study [J]. Journal of the European Ceramic Society, 2021, 41(9): 4788–4793. doi: 10.1016/j.jeurceramsoc.2021.03.056
    [47]
    LIANG H, FANG L M, GUAN S X, et al. Insights into the bond behavior and mechanical properties of hafnium carbide under high pressure and high temperature [J]. Inorganic Chemistry, 2021, 60(2): 515–524. doi: 10.1021/acs.inorgchem.0c02800
    [48]
    XU C W, LI Y, INOUE T, et al. Elastic properties of Mg-phase D at high pressure [J]. High Pressure Research, 2021, 41(3): 233–246. doi: 10.1080/08957959.2021.1954177
    [49]
    HE R Q, FANG L M, HAN T X, et al. Elasticity, mechanical and thermal properties of polycrystalline hafnium carbide and tantalum carbide at high pressure [J]. Journal of the European Ceramic Society, 2022, 42(13): 5220–5228. doi: 10.1016/j.jeurceramsoc.2022.06.039
    [50]
    CHENG Y S, HE R Q, XIA Y H, et al. Sound velocities, and mechanical and electronic properties of the intermetallic compound CeAl2 at high pressure [J]. Physical Review B, 2022, 105(6): 064106.
    [51]
    LI Q Z, CHEN X P, XIE L, et al. In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press [J]. Chinese Physics B, 2022, 31(6): 060702. doi: 10.1088/1674-1056/ac4902
    [52]
    HE R Q, FANG L M, CHEN X P, et al. Experimental study of covalent Cr3C2 with high ionicity: sound velocities, elasticity, and mechanical properties under high pressure [J]. Scripta Materialia, 2023, 224: 115146. doi: 10.1016/j.scriptamat.2022.115146
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(129) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return