Citation: | SUN Jiacheng, CHEN Xiping, XIE Lei, FANG Leiming. Application of the High-Pressure Neutron Diffractometer at CMRR in Materials Research[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030111. doi: 10.11858/gywlxb.20230790 |
[1] |
KISI E H, HOWARD C J. Applications of neutron powder diffraction [M]. Oxford: Oxford University Press, 2008.
|
[2] |
SHULL C G, STRAUSER W A, WOLLAN E O. Neutron diffraction by paramagnetic and antiferromagnetic substances [J]. Physical Review, 1951, 83(2): 333–345. doi: 10.1103/PhysRev.83.333
|
[3] |
GUTHRIE M, BOEHLER R, TULK C A, et al. Neutron diffraction observations of interstitial protons in dense ice [J]. Proceedings of the National Academy of Sciences, 2013, 110(26): 10552–10556. doi: 10.1073/pnas.1309277110
|
[4] |
孙光爱, 刘栋, 龚建, 等. 中国绵阳研究堆CMRR中子散射平台及应用 [J]. 中国科学: 物理学 力学 天文学, 2021, 51(9): 092009.
SUN G A, LIU D, GONG J, et al. The neutron scattering platform of China Mianyang Research Reactor (CMRR) and recent applications [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2021, 51(9): 092009.
|
[5] |
SUN G A, ZHANG C S, CHEN B, et al. A new operating neutron scattering facility CMRR in China [J]. Neutron News, 2016, 27(4): 21–26. doi: 10.1080/10448632.2016.1233018
|
[6] |
XIE L, CHEN X P, FANG L M, et al. Fenghuang: high-intensity multi-section neutron powder diffractometer at CMRR [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 915: 31–35.
|
[7] |
XIA Y H, LI H, CAO X F, et al. Upgrade of Xuanwu: a dual-mode neutron powder diffractometer at CMRR [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1042: 167452.
|
[8] |
ZHANG W J, CUI J R, WANG S S, et al. Deforming lanthanum trihydride for superionic conduction [J]. Nature, 2023, 616(7955): 73–76. doi: 10.1038/s41586-023-05815-0
|
[9] |
FU Z Q, CHEN X F, NIE H C, et al. Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O3 [J]. Nature Communications, 2022, 13(1): 1390. doi: 10.1038/s41467-022-29079-w
|
[10] |
LI T Y, LIU C, SHI P, et al. High-performance strain of lead-free relaxor-ferroelectric piezoceramics by the morphotropic phase boundary modification [J]. Advanced Functional Materials, 2022, 32(32): 2202307. doi: 10.1002/adfm.202202307
|
[11] |
ZHU L, WANG Y W, CHEN J C, et al. Enhancing ionic conductivity in solid electrolyte by relocating diffusion ions to under-coordination sites [J]. Science Advances, 2022, 8(11): eabj7698. doi: 10.1126/sciadv.abj7698
|
[12] |
FANG L M, CHEN X P, XIE L, et al. The neutron diffraction experiments under high pressure and high temperature on FENGHUANG diffractometer at CMRR [J]. Nuclear Analysis, 2022, 1(3): 100023. doi: 10.1016/j.nucana.2022.100023
|
[13] |
房雷鸣, 陈喜平, 谢雷, 等. CMRR中子科学平台的高压中子衍射技术及应用 [J]. 高压物理学报, 2020, 34(5): 050104. doi: 10.11858/gywlxb.20200588
FANG L M, CHEN X P, XIE L, et al. High pressure neutron diffraction technology and applications at CMRR [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050104. doi: 10.11858/gywlxb.20200588
|
[14] |
BULL C L, FUNNELL N P, TUCKER M G, et al. PEARL: the high pressure neutron powder diffractometer at ISIS [J]. High Pressure Research, 2016, 36: 493–511. doi: 10.1080/08957959.2016.1214730
|
[15] |
BESSON J M, NELMES R J, HAMEL G, et al. Neutron powder diffraction above 10 GPa [J]. Physica B: Condensed Matter, 1992, 180/181: 907–910. doi: 10.1016/0921-4526(92)90505-M
|
[16] |
HATTORI T, SANO-FURUKAWA A, ARIMA H, et al. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 780: 55–67.
|
[17] |
ANDERSEN K H, ARGYRIOU D N, JACKSON A J, et al. The instrument suite of the European Spallation Source [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 957: 163402.
|
[18] |
BOEHLER R, GUTHRIE M, MOLAISON J J, et al. Large-volume diamond cells for neutron diffraction above 90 GPa [J]. High Pressure Research, 2013, 33(3): 546–554. doi: 10.1080/08957959.2013.823197
|
[19] |
MCWHAN D B, BLOCH D, PARISOT G. Apparatus for neutron diffraction at high pressure [J]. Review of Scientific Instruments, 2003, 45(5): 643–646.
|
[20] |
KLOTZ S, BESSON J M, HAMEL G, et al. Neutron powder diffraction at pressures beyond 25 GPa [J]. Applied Physics Letters, 1995, 66(14): 1735–1737. doi: 10.1063/1.113350
|
[21] |
LE GODEC Y, DOVE M T, REDFERN S A T, et al. Recent developments using the paris-edinburgh cell for neutron diffraction at high pressure and high temperature and some applications [J]. High Pressure Research, 2003, 23(3): 281–287. doi: 10.1080/0895795032000102496
|
[22] |
GUTHRIE M. Future directions in high-pressure neutron diffraction [J]. Journal of Physics: Condensed Matter, 2015, 27(15): 153201. doi: 10.1088/0953-8984/27/15/153201
|
[23] |
FANG L M, WANG Y, CHEN X P, et al. A pressure calibration method for a portable wide-access “panoramic” cell [J]. Chinese Physics B, 2014, 23(11): 110701. doi: 10.1088/1674-1056/23/11/110701
|
[24] |
房雷鸣, 陈喜平, 谢雷, 等. 吉帕压力下原位中子衍射技术及其在铁中的应用 [J]. 高压物理学报, 2016, 30(1): 1–6. doi: 10.11858/gywlxb.2016.01.001
FANG L M, CHEN X P, XIE L, et al. High pressure in-situ neutron diffraction under gigapascal of iron [J]. Chinese Journal of High Pressure Physics, 2016, 30(1): 1–6. doi: 10.11858/gywlxb.2016.01.001
|
[25] |
NI X L, FANG L M, LI X, et al. Neutron diffraction of large-volume samples at high pressure using compact opposed-anvil cells [J]. Chinese Physics Letters, 2018, 35: 040701. doi: 10.1088/0256-307X/35/4/040701
|
[26] |
XIANG C J, HU Q W, WANG Q, et al. The design of 2/8-type high-pressure cell applied to in situ neutron diffraction [J]. Chinese Physics B, 2019, 28(7): 070701. doi: 10.1088/1674-1056/28/7/070701
|
[27] |
史钰, 陈喜平, 谢雷, 等. 基于巴黎-爱丁堡压机的高压中子衍射技术 [J]. 物理学报, 2019, 68(11): 116101. doi: 10.7498/aps.68.20190179
SHI Y, CHEN X P, XIE L, et al. High-pressure neutron diffraction techniques based on Paris-Edingburgh press [J]. Acta Physica Sinica, 2019, 68(11): 116101. doi: 10.7498/aps.68.20190179
|
[28] |
HU Q W, FANG L M, LI Q, et al. Enhancing the pressure limitation in large-volume Bridgman-anvil cell used for in situ neutron diffraction [J]. High Pressure Research, 2019, 39(4): 655–665. doi: 10.1080/08957959.2019.1666841
|
[29] |
江明全, 李欣, 房雷鸣, 等. 基于PE型压机中子衍射高温高压组装的优化设计与实验验证 [J]. 物理学报, 2020, 69(22): 226101. doi: 10.7498/aps.69.20200832
JIANG M Q, LI X, FANG L M, et al. Optimal design and experimental verification of high-temperature and high-pressure assembly of neutron diffraction based on PE-type press [J]. Acta Physica Sinica, 2020, 69(22): 226101. doi: 10.7498/aps.69.20200832
|
[30] |
杨功章, 谢雷, 陈喜平, 等. 巴黎-爱丁堡压机中子衍射高压下温度加载实验 [J]. 物理学报, 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419
YANG G Z, XIE L, CHEN X P, et al. Experimental study of simultaneous high-temperature and high-pressure assembly of Paris-Edinburgh press for neutron diffraction [J]. Acta Physica Sinica, 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419
|
[31] |
高上攀, 雷力, 胡启威, 等. 三元铁基金属氮化物的高压复分解反应合成 [J]. 高压物理学报, 2016, 30(4): 265–270.
GAO S P, LEI L, HU Q W, et al. High-pressure solid-state metathesis synthesis of ternary iron-based metal nitrides [J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 265–270.
|
[32] |
ZHOU X F, XU W W, GUI Z G, et al. Polar nitride perovskite LaWN(3–δ) with orthorhombic structure [J]. Advanced Science, 2023, 10(19): 2205479. doi: 10.1002/advs.202205479
|
[33] |
ZHOU X F, GU C, SONG G Z, et al. Synthesis, crystal structures, mechanical properties, and formation mechanisms of cubic tungsten nitrides [J]. Chemistry of Materials, 2022, 34(20): 9261–9269. doi: 10.1021/acs.chemmater.2c02563
|
[34] |
LEI L, ZHANG L L, GAO S P, et al. Neutron diffraction study of the structural and magnetic properties of ε-Fe3N1.098 and ε-Fe2.322Co0.678N0.888 [J]. Journal of Alloys and Compounds, 2018, 752: 99–105. doi: 10.1016/j.jallcom.2018.04.143
|
[35] |
WU B B, LEI L, ZHANG F, et al. Pressure-induced disordering of site occupation in iron-nickel nitrides [J]. Matter and Radiation at Extremes, 2021, 6(3): 038401. doi: 10.1063/5.0040041
|
[36] |
HU Q W, FANG L M, MA S G, et al. Observation of specific optical phonon modes dominating Li ion diffusion in γ-LiAlO2 ceramic [J]. Ceramics International, 2021, 47(13): 17980–17985. doi: 10.1016/j.ceramint.2021.03.112
|
[37] |
FENG X Y, WANG C H, PAN H J, et al. Interstitial Li+ and Li+ migrations in the Li2+ xC1– xB xO3 solid electrolyte [J]. The Journal of Physical Chemistry C, 2022, 126(43): 18466–18474. doi: 10.1021/acs.jpcc.2c05189
|
[38] |
AHMAD A S, LIANG Y, DONG M, et al. Pressure-driven switching of magnetism in layered CrCl3 [J]. Nanoscale, 2020, 12(45): 22935–22944. doi: 10.1039/D0NR04325G
|
[39] |
ZHU X K, LIU H, LIU L, et al. Spin glass state in chemical vapor-deposited crystalline Cr2Se3 nanosheets [J]. Chemistry of Materials, 2021, 33: 3851–3858. doi: 10.1021/acs.chemmater.1c01222
|
[40] |
PALMER S J P, FIELD J E, HUNTLEY J M. Deformation, strengths and strains to failure of polymer bonded explosives [J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1993, 440(1909): 399–419.
|
[41] |
LI H, LI Y, BAI L F, et al. Acceleration of δ- to β-HMX-D8 phase retransformation with D2O and intergranular strain evolution in a HMX-based polymer-bonded explosive [J]. The Journal of Physical Chemistry C, 2019, 123(12): 6958–6964. doi: 10.1021/acs.jpcc.8b10002
|
[42] |
LI H, BAI L F, CHEN X P, et al. Strain-induced structural change and mechanical properties of 1,3,5-triamino-2,4,6-trinitrobenzene probed by neutron diffraction [J]. Bulletin of Materials Science, 2021, 44(1): 53. doi: 10.1007/s12034-020-02339-5
|
[43] |
LIU Y, DU H F, FANG L M, et al. Pressure-driven electronic phase transition in the high-pressure phase of nitrogen-rich 1H-tetrazoles [J]. RSC Advances, 2021, 11(35): 21507–21513. doi: 10.1039/D1RA00522G
|
[44] |
ZHOU Z Y, GAO Z P, XIONG Z W, et al. Giant power density from BiFeO3-based ferroelectric ceramics by shock compression [J]. Applied Physics Letters, 2022, 121(11): 113903. doi: 10.1063/5.0102102
|
[45] |
ZHOU Z Y, FANG L M, XIONG Z W, et al. Phase transition of potassium sodium niobate under high pressures [J]. Applied Physics Letters, 2023, 123(1): 012904. doi: 10.1063/5.0159971
|
[46] |
LI Q Z, YANG X X, PENG F, et al. Elasticity, mechanical and thermal properties of submicron h-AlN: in-situ high pressure ultrasonic study [J]. Journal of the European Ceramic Society, 2021, 41(9): 4788–4793. doi: 10.1016/j.jeurceramsoc.2021.03.056
|
[47] |
LIANG H, FANG L M, GUAN S X, et al. Insights into the bond behavior and mechanical properties of hafnium carbide under high pressure and high temperature [J]. Inorganic Chemistry, 2021, 60(2): 515–524. doi: 10.1021/acs.inorgchem.0c02800
|
[48] |
XU C W, LI Y, INOUE T, et al. Elastic properties of Mg-phase D at high pressure [J]. High Pressure Research, 2021, 41(3): 233–246. doi: 10.1080/08957959.2021.1954177
|
[49] |
HE R Q, FANG L M, HAN T X, et al. Elasticity, mechanical and thermal properties of polycrystalline hafnium carbide and tantalum carbide at high pressure [J]. Journal of the European Ceramic Society, 2022, 42(13): 5220–5228. doi: 10.1016/j.jeurceramsoc.2022.06.039
|
[50] |
CHENG Y S, HE R Q, XIA Y H, et al. Sound velocities, and mechanical and electronic properties of the intermetallic compound CeAl2 at high pressure [J]. Physical Review B, 2022, 105(6): 064106.
|
[51] |
LI Q Z, CHEN X P, XIE L, et al. In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press [J]. Chinese Physics B, 2022, 31(6): 060702. doi: 10.1088/1674-1056/ac4902
|
[52] |
HE R Q, FANG L M, CHEN X P, et al. Experimental study of covalent Cr3C2 with high ionicity: sound velocities, elasticity, and mechanical properties under high pressure [J]. Scripta Materialia, 2023, 224: 115146. doi: 10.1016/j.scriptamat.2022.115146
|