Citation: | YE Shijia, HAO Long, WANG Yufeng, LI Shourui, GENG Huayun, LI Jun. Experimental Research Progress on Physical Properties and “Phase Transition” of Polymers under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030109. doi: 10.11858/gywlxb.20230787 |
[1] |
国家自然科学基金委员会, 中国科学院. 中国学科发展战略: 软凝聚态物理学 [M]. 北京: 科学出版社, 2020: 1−25.
National Natural Science Foundation of China, Chinese Academy of Sciences. Chinese discipline development strategy: soft condensed matter physics [M]. Beijing: Science Press, 2020: 1−25.
|
[2] |
朱诚身. 聚合物结构分析 [M]. 2版. 北京: 科学出版社, 2010: 1−5.
ZHU C S. Analysis of polymer structure [M]. 2nd ed. Beijing: Science Press, 2010: 1−5.
|
[3] |
MARSH S P. LASL shock Hugoniot data [M]. Berkeley: University of California Press, 1980.
|
[4] |
CARTER W J, MARSH S P. Hugoniot equation of state of polymers: LA-13006-MS [R]. Los Alamos: Los Alamos National Laboratory, 1995.
|
[5] |
BOURNE N K. On the shock response of polymers to extreme loading [J]. Journal of Dynamic Behavior of Materials, 2016, 2: 33–42. doi: 10.1007/s40870-016-0055-5
|
[6] |
MORRIS C E, FRITZ J N, MCQUEEN R G. The equation of state of polytetrafluoroethylene to 80 GPa [J]. The Journal of Chemical Physics, 1984, 80(10): 5203–5218. doi: 10.1063/1.446591
|
[7] |
HARTLEY N J, BROWN S, COWAN T E, et al. Evidence for crystalline structure in dynamically-compressed polyethylene up to 200 GPa [J]. Scientific Reports, 2019, 9(1): 4196. doi: 10.1038/s41598-019-40782-5
|
[8] |
HUBER R C, DATTELBAUM D M, LANG J M, et al. Polyimide dynamically compressed to decomposition pressures: two-wave structures captured by velocimetry and modeling [J]. Journal of Applied Physics, 2023, 133(3): 035106. doi: 10.1063/5.0128515
|
[9] |
JONES A H, ISBELL W M, MAIDEN C J. Measurement of the very-high-pressure properties of materials using a light-gas gun [J]. Journal of Applied Physics, 1966, 37(9): 3493–3499. doi: 10.1063/1.1708887
|
[10] |
金柯, 习锋, 杨慕松, 等. 化爆加载装置系列化设计 [J]. 含能材料, 2003, 11(3): 113–115, 122. doi: 10.3969/j.issn.1006-9941.2003.03.001
JIN K, XI F, YANG M S, et al. Design of serialization explosive-loading device [J]. Energetic Materials, 2003, 11(3): 113–115, 122. doi: 10.3969/j.issn.1006-9941.2003.03.001
|
[11] |
PAISLEY D L, LUO S N, GREENFIELD S R, et al. Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications [J]. Review of Scientific Instruments, 2008, 79(2): 023902. doi: 10.1063/1.2839399
|
[12] |
种涛, 张朝辉, 王贵林, 等. 35 GPa斜波加载下RDX单晶炸药的动力学行为 [J]. 高压物理学报, 2022, 36(3): 030103. doi: 10.11858/gywlxb.20210803
CHONG T, ZHANG Z H, WANG G L, et al. Dynamic behaviors of RDX single crystal under ramp wave compression up to 35 GPa [J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 030103. doi: 10.11858/gywlxb.20210803
|
[13] |
王贵林. 磁驱动平面加载实验技术及其在高压物态方程研究中的应用 [D]. 合肥: 中国科学技术大学, 2014.
WANG G L. Magnetic loading techniques and its applications in high-pressure EOS [D]. Hefei: University of Science and Technology of China, 2014.
|
[14] |
ZHERNOKLETOV M V, GLUSHAK B L. Material properties under intensive dynamic loading [M]. Berlin: Springer, 2006: 74–91.
|
[15] |
HAYES B. Particle-velocity gauge system for nanosecond sampling rate of shock and detonation waves [J]. Review of Scientific Instruments, 1981, 52(4): 594–603. doi: 10.1063/1.1136643
|
[16] |
BARKER L M. The development of the VISAR, and its use in shock compression science [J]. AIP Conference Proceedings, 2000, 505(1): 11–18. doi: 10.1063/1.1303413
|
[17] |
WENG J D, TAN H, WANG X, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution [J]. Applied Physics Letters, 2006, 89(11): 111101. doi: 10.1063/1.2335948
|
[18] |
DOLAN D H. Accuracy and precision in photonic Doppler velocimetry [J]. Review of Scientific Instruments, 2010, 81(5): 053905. doi: 10.1063/1.3429257
|
[19] |
WU J, LI J B, LI J, et al. A sub-nanosecond pyrometer with broadband spectral channels for temperature measurement of dynamic compression experiments [J]. Measurement, 2022, 195: 111147. doi: 10.1016/j.measurement.2022.111147
|
[20] |
TAKAHARA A, HIGAKI Y, HIRAI T, et al. Application of synchrotron radiation X-ray scattering and spectroscopy to soft matter [J]. Polymers, 2020, 12(7): 1624. doi: 10.3390/polym12071624
|
[21] |
CHEN S, LI Y X, ZHANG N B, et al. Capture deformation twinning in Mg during shock compression with ultrafast synchrotron X-ray diffraction [J]. Physical Review Letters, 2019, 123(25): 255501. doi: 10.1103/PhysRevLett.123.255501
|
[22] |
WINEY J M, GUPTA Y M. Shock-induced chemical changes in neat nitromethane: use of time-resolved Raman spectroscopy [J]. The Journal of Physical Chemistry B, 1997, 101(50): 10733–10743. doi: 10.1021/jp972588a
|
[23] |
RASTOGI V, CHAURASIA S, RAO U, et al. Time-resolved Raman spectroscopy of polystyrene under laser driven shock compression [J]. Journal of Raman Spectroscopy, 2017, 48(7): 1007–1012. doi: 10.1002/jrs.5166
|
[24] |
DATTELBAUM D M, COE J D. Shock-driven decomposition of polymers and polymeric foams [J]. Polymers, 2019, 11(3): 493. doi: 10.3390/polym11030493
|
[25] |
谭华. 实验冲击波物理 [M]. 北京: 国防工业出版社, 2018: 1−26.
TAN H. Experimental shock wave physics [M]. Beijing: National Defense Industry Press, 2018: 1−26.
|
[26] |
MILLETT J C F, BOURNE N K, GRAY G T. The response of polyether ether ketone to one-dimensional shock loading [J]. Journal of Physics D: Applied Physics, 2004, 37(6): 942–947. doi: 10.1088/0022-3727/37/6/021
|
[27] |
ROBERTS A, APPLEBY-THOMAS G J, HAZELL P. Experimental determination of Grüneisen gamma for polyether ether ketone (PEEK) using the shock-reverberation technique [J]. AIP Conference Proceedings, 2012, 1426(1): 824–827. doi: 10.1063/1.3686405
|
[28] |
BIAN Y L, CHAI H W, YE S J, et al. Compression and spallation properties of polyethylene terephthalate under plate impact loading [J]. International Journal of Mechanical Sciences, 2021, 211: 106736. doi: 10.1016/j.ijmecsci.2021.106736
|
[29] |
BOURNE N K, MILLETT J C F. On the influence of chain morphology on the shock response of three thermoplastics [J]. Metallurgical and Materials Transactions A, 2008, 39(2): 266–271. doi: 10.1007/s11661-007-9371-7
|
[30] |
YE S J, CHAI H W, XIAO X H, et al. Spallation of polycarbonate under plate impact loading [J]. Journal of Applied Physics, 2019, 126(8): 085105. doi: 10.1063/1.5108965
|
[31] |
COE J D, BROWN E, CADY C M, et al. Equation of state and damage in polyethylene: LA-UR-17-29234 [R]. Los Alamos: Los Alamos National Laboratory, 2017.
|
[32] |
DATTELBAUM D M, COE J D, RIGG P A, et al. Shockwave response of two carbon fiber-polymer composites to 50 GPa [J]. Journal of Applied Physics, 2014, 116(19): 194308. doi: 10.1063/1.4898313
|
[33] |
MORRIS C E, LOUGHRAN E D, MORTENSEN G F, et al. Shock induced dissociation of polyethylene: LA-UR-89-2864 [R]. Los Alamos: Los Alamos National Laboratory, 1989.
|
[34] |
ABBOTT A, BRANCH B, BROWN E N, et al. The dynamic response of polymers interrogated by 3rd generation X-ray light source: LA-UR-19-29436 [R]. Los Alamos: Los Alamos National Laboratory, 2019.
|
[35] |
KRAUS D, VORBERGER J, PAK A, et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions [J]. Nature Astronomy, 2017, 1(9): 606–611. doi: 10.1038/s41550-017-0219-9
|
[36] |
KRAUS D, HARTLEY N J, FRYDRYCH S, et al. High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion [J]. Physics of Plasmas, 2018, 25(5): 056313. doi: 10.1063/1.5017908
|
[37] |
FONTANA L, VINH D Q, SANTORO M, et al. High-pressure crystalline polyethylene studied by X-ray diffraction and ab initio simulations [J]. Physical Review B, 2007, 75(17): 174112. doi: 10.1103/PhysRevB.75.174112
|
[38] |
FONTANA L, SANTORO M, BINI R, et al. High-pressure vibrational properties of polyethylene [J]. The Journal of Chemical Physics, 2010, 133(20): 204502. doi: 10.1063/1.3507251
|
[39] |
BROWN E N, TRUJILLO C P, GRAY G T, et al. Soft recovery of polytetrafluoroethylene shocked through the crystalline phase Ⅱ-Ⅲ transition [J]. Journal of Applied Physics, 2007, 101(2): 024916. doi: 10.1063/1.2424536
|
[40] |
HUBER R C, WATKINS E B, DATTELBAUM D M, et al. In situ X-ray diffraction of high density polyethylene during dynamic drive: polymer chain compression and decomposition [J]. Journal of Applied Physics, 2021, 130(17): 175901. doi: 10.1063/5.0057439
|
[41] |
HUBER R C, PETERSON J, COE J D, et al. Polysulfone shock compressed above the decomposition threshold: velocimetry and modeling of two-wave structures [J]. Journal of Applied Physics, 2020, 127(10): 105902. doi: 10.1063/1.5124252
|
[42] |
DATTELBAUM D M, COE J D, KIYANDA C B, et al. Reactive, anomalous compression in shocked polyurethane foams [J]. Journal of Applied Physics, 2014, 115(17): 174908. doi: 10.1063/1.4875478
|
[43] |
KIPP M E, CHHABILDAS L C, REINHART W D, et al. Polyurethane foam impact experiments and simulations [J]. AIP Conference Proceedings, 2000, 505(1): 313–316. doi: 10.1063/1.1303481
|
[44] |
COE J D, LENTZ M, VELIZHANIN K A, et al. The equation of state and shock-driven decomposition of polymethy-lmethacrylate (PMMA) [J]. Journal of Applied Physics, 2022, 131(12): 125108. doi: 10.1063/5.0080369
|
[45] |
MAERZKE K A, COE J D, TICKNOR C, et al. Equations of state for polyethylene and its shock-driven decomposition products [J]. Journal of Applied Physics, 2019, 126(4): 045902. doi: 10.1063/1.5099371
|
[46] |
BOCK N, COFFEY D, WALLACE D C. Nonadiabatic contributions to the free energy from the electron-phonon interaction in Na, K, Al, and Pb [J]. Physical Review B, 2005, 72(15): 155120. doi: 10.1103/PhysRevB.72.155120
|
[47] |
BOCK N, WALLACE D C, COFFEY D. Adiabatic and nonadiabatic contributions to the free energy from the electron-phonon interaction for Na, K, Al, and Pb [J]. Physical Review B, 2006, 73(7): 075114. doi: 10.1103/PhysRevB.73.075114
|
[48] |
BENNETT B I. Computationally efficient expression for the zero-temperature isotherm in equations of state: LA-8616-MS [R]. Los Alamos: Los Alamos National Laboratory, 1980.
|
[49] |
COWAN R D, ASHKIN J. Extension of the Thomas-Fermi-Dirac statistical theory of the atom to finite temperatures [J]. Physical Review, 1957, 105(1): 144–157. doi: 10.1103/PhysRev.105.144
|
[50] |
WUNDERLICH B. Thermal analysis of polymeric materials [M]. Berlin: Springer, 2005: 121−131.
|
[51] |
ROSS M. A high-density fluid-perturbation theory based on an inverse 12th-power hard-sphere reference system [J]. The Journal of Chemical Physics, 1979, 71(4): 1567–1571. doi: 10.1063/1.438501
|
[52] |
COE J D, GAMMEL J T. A new 5-phase equation of state for carbon: LA-UR-16-26877 [R]. Los Alamos: Los Alamos National Laboratory, 2016.
|
[53] |
ZHANG H R, ZHANG X X, FU X L, et al. Decomposition mechanisms of insensitive 2D energetic polymer TAGP using ReaxFF molecular dynamics simulation combined with Pyro-GC/MS experiments [J]. Journal of Analytical and Applied Pyrolysis, 2022, 162: 105453. doi: 10.1016/j.jaap.2022.105453
|
[54] |
JONES K, LANE J M D, MOORE N W. A reactive molecular dynamics study of phenol and phenolic polymers in extreme environments [J]. AIP Conference Proceedings, 2020, 2272(1): 070018. doi: 10.1063/12.0001031
|
[55] |
ISLAM M M, STRACHAN A. Decomposition and reaction of polyvinyl nitrate under shock and thermal loading: a ReaxFF reactive molecular dynamics study [J]. The Journal of Physical Chemistry C, 2017, 121(40): 22452–22464. doi: 10.1021/acs.jpcc.7b06154
|
[56] |
MATTSSON T R, LANE J M D, COCHRANE K R, et al. First-principles and classical molecular dynamics simulation of shocked polymers [J]. Physical Review B, 2010, 81(5): 054103. doi: 10.1103/PhysRevB.81.054103
|
[57] |
VAN DUIN A C T, DASGUPTA S, LORANT F, et al. ReaxFF: a reactive force field for hydrocarbons [J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396–9409. doi: 10.1021/jp004368u
|