Volume 38 Issue 1
Feb 2024
Turn off MathJax
Article Contents
WANG Xiao, LIU Zhehong, LU Dabiao, PI Maocai, PAN Zhao, LONG Youwen. A-Site Ordered Quadruple Perovskite Oxides: Structures, Properties and Prospects[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 010101. doi: 10.11858/gywlxb.20230785
Citation: WANG Xiao, LIU Zhehong, LU Dabiao, PI Maocai, PAN Zhao, LONG Youwen. A-Site Ordered Quadruple Perovskite Oxides: Structures, Properties and Prospects[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 010101. doi: 10.11858/gywlxb.20230785

A-Site Ordered Quadruple Perovskite Oxides: Structures, Properties and Prospects

doi: 10.11858/gywlxb.20230785
  • Received Date: 08 Nov 2023
  • Rev Recd Date: 15 Dec 2023
  • Available Online: 04 Feb 2024
  • Issue Publish Date: 05 Feb 2024
  • A-site ordered quadruple perovskite oxides with a formula as $\rm AA'_3 B^{\;}_4 O^{\;}_{12}$ exhibit multiple physical properties and superior performances, thus act as important subjects of current condensed matter physics and material science. Compared to the simple ABO3 perovskite, in the A-site ordered quadruple perovskite three quarters of the A atoms are replaced by transition metal Aʹ, forming ordered A/Aʹ occupancy with a 1∶3 ratio. As a result, the electric and magnetic interactions such as Aʹ-Aʹ and Aʹ-B can occur, leading to novel phenomena and new physics. Here we focus on several representative A-site ordered quadruple perovskites, recall their researches, briefly introduce their structures, physical properties and inner mechanisms, and discuss the opportunities for both fundamental studies and potential applications.

     

  • loading
  • [1]
    CARPENTER M A, HOWARD C J. Symmetry rules and strain/order-parameter relationships for coupling between octahedral tilting and cooperative Jahn-Teller transitions in ABX3 perovskites. Ⅰ. theory [J]. Acta Crystallographica Section B, 2009, 65(Pt 2): 134−146.
    [2]
    CARPENTER M A, HOWARD C J. Symmetry rules and strain/order-parameter relationships for coupling between octahedral tilting and cooperative Jahn-Teller transitions in ABX3 perovskites. Ⅱ. application [J]. Acta Crystallographica Section B, 2009, 65(Pt 2): 147−159.
    [3]
    VASALA S, KARPPINEN M. A2BʹBʹʹO6 perovskite: a review [J]. Progress in Solid State Chemistry, 2015, 43(1/2): 1–36.
    [4]
    ANDERSON P W. More is different: broken symmetry and the nature of the hierarchical structure of science [J]. Science, 1972, 177(4047): 393–396. doi: 10.1126/science.177.4047.393
    [5]
    DESCHANVRES A, RAVEAU B, TOLLEMER F. Substitution of copper for a divalent metal in perovskite-type titanates [J]. Bulletin de la Société Chimique de France, 1967, 11: 4077–4078.
    [6]
    SUBRAMANIAN M A, LI D, DUAN N, et al. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases [J]. Journal of Solid State Chemistry, 2000, 151(2): 323–325. doi: 10.1006/jssc.2000.8703
    [7]
    LONG Y W, HAYASHI N, SAITO T, et al. Temperature-induced A-B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite [J]. Nature, 2009, 458(7234): 60–63. doi: 10.1038/nature07816
    [8]
    ZHAO J F, GAO J C, LI W M, et al. A combinatory ferroelectric compound bridging simple ABO3 and A-site-ordered quadruple perovskite [J]. Nature Communications, 2021, 12(1): 747. doi: 10.1038/s41467-020-20833-6
    [9]
    WANG X, CHAI Y S, ZHOU L, et al. Observation of magnetoelectric multiferroicity in a cubic perovskite system: LaMn3Cr4O12 [J]. Physical Review Letters, 2015, 115(8): 087601. doi: 10.1103/PhysRevLett.115.087601
    [10]
    DENG H S, LIU M, DAI J H, et al. Strong enhancement of spin ordering by A-site magnetic ions in the ferrimagnet CaCu3Fe2Os2O12 [J]. Physical Review B, 2016, 94(2): 024414. doi: 10.1103/PhysRevB.94.024414
    [11]
    ZENG Z, GREENBLATT M, SUBRAMANIAN M A, et al. Large low-field magnetoresistance in perovskite-type CaCu3Mn4O12 without double exchange [J]. Physical Review Letters, 1999, 82(15): 3164–3167. doi: 10.1103/PhysRevLett.82.3164
    [12]
    CHEN W T, MIZUMAKI M, SEKI H, et al. A half-metallic A- and B-site-ordered quadruple perovskite oxide CaCu3Fe2Re2O12 with large magnetization and a high transition temperature [J]. Nature Communications, 2014, 5: 3909. doi: 10.1038/ncomms4909
    [13]
    YAGI S, YAMADA I, TSUKASAKI H, et al. Covalency-reinforced oxygen evolution reaction catalyst [J]. Nature Communications, 2015, 6: 8249. doi: 10.1038/ncomms9249
    [14]
    OVSYANNIKOV S V, ZAINULIN Y G, KADYROVA N I, et al. New antiferromagnetic perovskite CaCo3V4O12 prepared at high-pressure and high-temperature conditions [J]. Inorganic Chemistry, 2013, 52(20): 11703–11710. doi: 10.1021/ic400649h
    [15]
    PATINO M A, ROMERO F D, GOTO M, et al. Multi- k spin ordering in CaFe3Ti4O12 stabilized by spin-orbit coupling and further-neighbor exchange [J]. Physical Review Research, 2021, 3(4): 043208. doi: 10.1103/PhysRevResearch.3.043208
    [16]
    BOCHU B, DESCHIZEAUX M N, JOUBERT J C, et al. Synthèse et caractérisation d'une série de titanates pérowskites isotypes de [CaCu3](Mn4)O12 [J]. Journal of Solid State Chemistry, 1979, 29(2): 291–298. doi: 10.1016/0022-4596(79)90235-4
    [17]
    MAREZIO M, DERNIER P D, CHENAVAS J, et al. High pressure synthesis and crystal structure of NaMn7O12 [J]. Journal of Solid State Chemistry, 1973, 6(1): 16–20. doi: 10.1016/0022-4596(73)90200-4
    [18]
    BOCHU B, CHENAVAS J, JOUBERT J C, et al. High pressure synthesis and crystal structure of a new series of perovskite-like compounds CM7O12 (C=Na, Ca, Cd, Sr, La, Nd) [J]. Journal of Solid State Chemistry, 1974, 11(2): 88–93. doi: 10.1016/0022-4596(74)90102-9
    [19]
    CHENAVAS J, JOUBERT J C, MAREZIO M, et al. The synthesis and crystal structure of CaCu3Mn4O12: a new ferromagnetic-perovskite-like compound [J]. Journal of Solid State Chemistry, 1975, 14(1): 25–32. doi: 10.1016/0022-4596(75)90358-8
    [20]
    OZAKI Y, GHEDIRA M, CHENAVAS J, et al. High-pressure synthesis and bond lengths of calcium copper germanium oxide [CaCu3](Ge4)O12 [J]. Acta Crystallographica, 1977, B33: 3615–3617.
    [21]
    MEYER C, GROS Y, BOCHU B, et al. Synthesis, crystal structure, and Mössbauer study of a series of perovskite-like compounds [ACu3](M, Fe)4O12 [J]. Physica Status Solidi (A), 1978, 48(2): 581–586. doi: 10.1002/pssa.2210480239
    [22]
    BOCHU B, JOUBERT J C, COLLOMB A, et al. Ferromagnetic oxides [Ln3+/Cu3]Mn4O12 (Ln=La to Lu and Y) [J]. Journal of Magnetism and Magnetic Materials, 1980, 15: 1319–1321.
    [23]
    BRYNTSE I, WERNER P E. Synthesis and structure of a perovskite related oxide, Bi2/3Cu3Ti4O12 [J]. Materials Research Bulletin, 1990, 25(4): 477–483. doi: 10.1016/0025-5408(90)90183-3
    [24]
    LEINENWEBER K, LINTON J, NAVROTSKY A, et al. High-pressure perovskites on the joint CaTiO3-FeTiO3 [J]. Physics and Chemistry of Minerals, 1995, 22(4): 251–258.
    [25]
    TROYANCHUK I O, LOBANOVSKY L S, KASPER N V, et al. Magnetotransport phenomena in A(Mn3− x Cu x )Mn4O12 (A=Ca, Tb, Tm) perovskites [J]. Physical Review B, 1998, 58(22): 14903–14907. doi: 10.1103/PhysRevB.58.14903
    [26]
    ZENG Z, GREENBLATT M, SUNSTROM J E, et al. Giant magnetoresistance in CaCu3Mn4O12-based oxides with perovskite-type structure [J]. Journal of Solid State Chemistry, 1999, 147(1): 185–198. doi: 10.1006/jssc.1999.8212
    [27]
    RAMIREZ A P, SUBRAMANIAN M A, GARDEL M, et al. Giant dielectric constant response in a copper-titanate [J]. Solid State Communications, 2000, 115(5): 217–220. doi: 10.1016/S0038-1098(00)00182-4
    [28]
    CHOUDHARY R N P, BHUNIA U. Structural, dielectric and electrical properties of ACu3Ti4O12 (A=Ca, Sr, and Ba) [J]. Journal of Materials Science, 2002, 37(24): 5177–5182. doi: 10.1023/A:1021019412533
    [29]
    HOMES C C, VOGT T, SHAPIRO S M, et al. Optical response of high-dielectric-constant perovskite-related oxide [J]. Science, 2000, 293(5530): 673–676.
    [30]
    HE L X, NEATON J B, COHEN M H, et al. First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12 [J]. Physical Review B, 2002, 65(21): 214112. doi: 10.1103/PhysRevB.65.214112
    [31]
    COLLOMB A, SAMARAS D, BOCHU B, et al. Propriétés et structure magnétiques de CaCu3Ti4O12 à structure perovskite [J]. Physica Status Solidi A, 1977, 41(2): 459–463. doi: 10.1002/pssa.2210410215
    [32]
    KOITZSCH A, BLUMBERG G, GOZAR A, et al. Antiferromagnetism in CaCu3Ti4O12 studied by magnetic Raman spectroscopy [J]. Physical Review B, 2002, 65(5): 052406. doi: 10.1103/PhysRevB.65.052406
    [33]
    LUNKENHEIMER P, BOBNAR V, PRONIN A V, et al. Origin of apparent colossal dielectric constants [J]. Physical Review B, 2002, 66(5): 052105.
    [34]
    MAXWELL J C. A Treatise on electricity and magnetism [M]. 3rd ed. New York: Dover, 1954.
    [35]
    WAGNER K W. Zur theorie der unvollkommenen dielektrika [J]. Annalen der Physik, 1913, 345(5): 817–855. doi: 10.1002/andp.19133450502
    [36]
    LARSEN P K, METSELAAR R. Electric and dielectric properties of polycrystalline yttrium iron garnet: space-charge-limited currents in an inhomogeneous solid [J]. Physical Review B, 1973, 8(5): 2016–2025. doi: 10.1103/PhysRevB.8.2016
    [37]
    TSELEV A, BROOKS C M, ANLAGE S M et al. Evidence for power-law frequency dependence of intrinsic dielectric response in the CaCu3Ti4O12 [J]. Physical Review B, 2004, 70(14): 144101. doi: 10.1103/PhysRevB.70.144101
    [38]
    LIU J J, DUAN C G, YIN W G, et al. Large dielectric constant and Maxwell-Wagner relaxation in Bi2/3Cu3Ti4O12 [J]. Physical Review B, 2004, 70(14): 144106. doi: 10.1103/PhysRevB.70.144106
    [39]
    LIU J J, DUAN C G, MEI W N. Dielectric properties and Maxwell-Wagner relaxation of compounds ACu3Ti4O12 (A=Ca, Bi2/3, Y2/3, La2/3) [J]. Journal of Applied Physics, 2005, 98(9): 093703. doi: 10.1063/1.2125117
    [40]
    SHAO S F, ZHANG J L, ZHENG P, et al. Microstructure and electrical properties of CaCu3Ti4O12 ceramics [J]. Journal of Applied Physics, 2006, 99(8): 084106. doi: 10.1063/1.2191447
    [41]
    FU D S, TANIGUCHI H, TANIYAMA T, et al. Origin of giant dielectric response in nonferroelectric CaCu3Ti4O12: inhomogeneous conduction nature probed by atomic force microscopy [J]. Chemistry of Materials, 2008, 20(5): 1694–1698. doi: 10.1021/cm0710507
    [42]
    CHUNG S Y, KIM I D, KANG S J L. Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate [J]. Nature Materials, 2004, 3(11): 774–778. doi: 10.1038/nmat1238
    [43]
    CLARKE D R. Varistor ceramics [J]. Journal of the American Ceramic Society, 1999, 82(3): 485–502. doi: 10.1111/j.1151-2916.1999.tb01793.x
    [44]
    FALCÓN H, ALONSO J A, SÁNCHEZ-BENÍTEZ J, et al. Crystal structure, magnetic and electrical properties of CaCu3Mn4− x Ti x O12 (0.3≤ x≤ 3.0) perovskites [J]. Journal of Physics: Condensed Matter, 2006, 18(29): 6841–6852. doi: 10.1088/0953-8984/18/29/021
    [45]
    DENG G C, XANTHOPOULOS N, MURALT P. Chemical nature of colossal dielectric constant of CaCu3Ti4O12 thin film by pulsed laser deposition [J]. Applied Physics Letters, 2008, 92(17): 172909. doi: 10.1063/1.2919076
    [46]
    JACOB K T, SHEKHAR C, LI X G, et al. Gibbs energy of formation of CaCu3Ti4O12 and phase relations in the system CaO-CuO/Cu2O-TiO2 [J]. Acta Materialia, 2008, 56(17): 4798–4803. doi: 10.1016/j.actamat.2008.05.038
    [47]
    AMARAL F, RUBINGER C P L, VALENTE M A, et al. Enhanced dielectric response of GeO2-doped CaCu3Ti4O12 ceramics [J]. Journal of Applied Physics, 2009, 105(3): 034109. doi: 10.1063/1.3075909
    [48]
    CHOI S Y, CHUNG S Y, YAMAMOTO T, et al. Direct determination of dopant site selectivity in ordered perovskite CaCu3Ti4O12 polycrystals by aberration-corrected STEM [J]. Advanced Materials, 2009, 21(8): 885–889. doi: 10.1002/adma.200802728
    [49]
    DENG G C, MURALT P. Annealing effects on electrical properties and defects of CaCu3Ti4O12 thin films deposited by pulsed laser deposition [J]. Physical Review B, 2010, 81(22): 224111. doi: 10.1103/PhysRevB.81.224111
    [50]
    YAMADA I, TAKATA K, HAYASHI N, et al. A perovskite containing quadrivalent iron as a charge-disproportionated ferrimagnet [J]. Angewandte Chemie International Edition, 2008, 47(37): 7032–7035. doi: 10.1002/anie.200801482
    [51]
    XIANG H P, LIU X J, ZHAO E J, et al. Ferrimagnetic and half-metallic CaCu3Fe4O12: prediction from first principles investigation [J]. Applied Physics Letters, 2007, 91(1): 011903. doi: 10.1063/1.2753734
    [52]
    MIZUMAKI M, CHEN W T, SAITO T, et al. Direct observation of the ferrimagnetic coupling of A-site Cu and B-site Fe spins in charge-disproportionated CaCu3Fe4O12 [J]. Physical Review B, 2011, 84(9): 094418. doi: 10.1103/PhysRevB.84.094418
    [53]
    LONG Y W. A-site ordered quadruple perovskite oxides AAʹ3B4O12 [J]. Chinese Physics B, 2016, 25(7): 078108. doi: 10.1088/1674-1056/25/7/078108
    [54]
    YAMADA I, TSUCHIDA K, OHGUSHI K, et al. Giant negative thermal expansion in the iron perovskite SrCu3Fe4O12 [J]. Angewandte Chemie International Edition, 2011, 50(29): 6579–6582. doi: 10.1002/anie.201102228
    [55]
    TAKENAKA K, TAKAGI H. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides [J]. Applied Physics Letters, 2005, 87(26): 261902. doi: 10.1063/1.2147726
    [56]
    HAO X F, XU Y H, GAO F M, et al. Charge disproportionation in CaCu3Fe4O12 [J]. Physical Review B, 2009, 79(11): 113101. doi: 10.1103/PhysRevB.79.113101
    [57]
    LI H P, LV S H, WANG Z C, et al. Mechanism of A-B intersite charge transfer and negative thermal expansion in A-site-ordered perovskite LaCu3Fe4O12 [J]. Journal of Applied Physics, 2012, 111(10): 103718. doi: 10.1063/1.4721408
    [58]
    CHEN W T, SAITO T, HAYASHI N, et al. Ligand-hole localization in oxides with unusual valence Fe [J]. Scientific Reports, 2012, 2: 449. doi: 10.1038/srep00449
    [59]
    ALLUB R, ALASCIO B. A thermodynamic model for the simultaneous charge/spin order transition in LaCu3Fe4O12 [J]. Journal of Physics: Condensed Matter, 2012, 24(49): 495601. doi: 10.1088/0953-8984/24/49/495601
    [60]
    ETANI H, YAMADA I, OHGUSHI K, et al. Suppression of intersite charge transfer in charge-disproportionated perovskite YCu3Fe4O12 [J]. Journal of the American Chemical Society, 2012, 135(16): 6100–6106.
    [61]
    YAMADA I, ETANI H, TSUCHIDA K, et al. Control of bond-strain-induced electronic phase transitions in iron perovskites [J]. Inorganic Chemistry, 2013, 52(23): 13751–13761. doi: 10.1021/ic402344m
    [62]
    REZAEI N, HANSMANN P, BAHRAMY M S, et al. Mechanism of charge transfer/disproportionation in LnCu3Fe4O12 (Ln=lanthanides) [J]. Physical Review B, 2014, 89(12): 125125. doi: 10.1103/PhysRevB.89.125125
    [63]
    MENG J L, ZHANG L F, YAO F, et al. Theoretical study on the negative thermal expansion perovskite LaCu3Fe4O12: pressure-triggered transition of magnetism, charge, and spin state [J]. Inorganic Chemistry, 2017, 56(11): 6371–6379. doi: 10.1021/acs.inorgchem.7b00458
    [64]
    YAMADA I, MARUKAWA S, MURAKAMI M, et al. “True” negative thermal expansion in Mn-doped LaCu3Fe4O12 perovskite oxides [J]. Applied Physics Letters, 2014, 105(23): 231906. doi: 10.1063/1.4903890
    [65]
    SAKAI Y, YANG J Y, YU R Z, et al. A-site and B-site charge orderings in an s- d level controlled perovskite oxide PbCoO3 [J]. Journal of the American Chemical Society, 2017, 139(12): 4574–4581. doi: 10.1021/jacs.7b01851
    [66]
    LIU Z H, SAKAI Y, YANG J Y, et al. Sequential spin state transition and intermetallic charge transfer in PbCoO3 [J]. Journal of the American Chemical Society, 2020, 142(12): 5731–5741. doi: 10.1021/jacs.9b13508
    [67]
    OVSYANNIKOV S V, ABAKUMOV A M, TSIRLIN A A, et al. Perovskite-like Mn2O3: a path to new manganites [J]. Angewandte Chemie International Edition, 2013, 52(5): 1494–1498. doi: 10.1002/anie.201208553
    [68]
    BYKOVA E, DUBROVINSKY L, DUBROVINSKAIA N, et al. Structural complexity of simple Fe2O3 at high pressures and temperatures [J]. Nature Communications, 2016, 7: 10661. doi: 10.1038/ncomms10661
    [69]
    SMOLENSKII G A, BOKOV V A. Coexistence of magnetic and electric ordering in crystals [J]. Journal of Applied Physics, 1964, 35(3): 915–918. doi: 10.1063/1.1713535
    [70]
    KIMURA T, GOTO T, SHINTANI H, et al. Magnetic control of ferroelectric polarization [J]. Nature, 2003, 426(6962): 55–58. doi: 10.1038/nature02018
    [71]
    WANG J, NEATON J B, ZHENG H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures [J]. Science, 2003, 299(5613): 1719–1722. doi: 10.1126/science.1080615
    [72]
    KHOMSKII D I. Multiferroics: different ways to combine magnetism and ferroelectricity [J]. Journal of Magnetism and Magnetic Materials, 2006, 306(1): 1–8. doi: 10.1016/j.jmmm.2006.01.238
    [73]
    DONG S, LIU J M, CHEONG S W, et al. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology [J]. Advances in Physics, 2015, 64(5/6): 519–626.
    [74]
    POPOV Y F, KADOMTSEVA A M, KROTOV S S, et al. Features of the magnetoelectric properties of BiFeO3 in high magnetic fields [J]. Low Temperature Physics, 2001, 27(6): 478–479. doi: 10.1063/1.1382990
    [75]
    TOKURA Y, SEKI S, NAGAOSA N. Multiferroics of spin origin [J]. Reports on Progress in Physics, 2014, 77(7): 076501. doi: 10.1088/0034-4885/77/7/076501
    [76]
    GAJEK M, BIBES M, FUSIL S, et al. Tunnel junctions with multiferroic barriers [J]. Nature Materials, 2007, 6(4): 296–302. doi: 10.1038/nmat1860
    [77]
    CHU Y H, MARTIN L W, HOLCOMB M B, et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic [J]. Nature Materials, 2008, 7(6): 478–482. doi: 10.1038/nmat2184
    [78]
    SHEVLIN S. Multiferroics and the path to the market [J]. Nature Materials, 2019, 18(3): 191–192. doi: 10.1038/s41563-019-0295-6
    [79]
    NAN T X, LIN H, GAO Y, et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas [J]. Nature Communications, 2017, 8(1): 296. doi: 10.1038/s41467-017-00343-8
    [80]
    LONG Y W, SAITO T, MIZUMAKI M, et al. Various valence states of square-coordinated Mn in A-site-ordered perovskites [J]. Journal of the American Chemical Society, 2009, 131(44): 16244–16247. doi: 10.1021/ja906668c
    [81]
    LV S H, LI H P, LIU X J, et al. Mn-Cr intersite independent magnetic behavior and electronic structures of LaMn3Cr4O12: study from first-principles [J]. Journal of Applied Physics, 2011, 110(2): 023711. doi: 10.1063/1.3610504
    [82]
    殷云宇, 王潇, 邓宏芟, 等. 多种有序钙钛矿结构的高压制备与特殊物性 [J]. 物理学报, 2017, 66(3): 030201. doi: 10.7498/aps.66.030201

    YIN Y Y, WANG X, DENG H S, et al. High-pressure synthesis and special physical properties of several ordered perovskite structures [J]. Acta Physica Sinica, 2017, 66(3): 030201. doi: 10.7498/aps.66.030201
    [83]
    SCHIRBER M. Multiferroic surprise [J]. Physics, 2015, 8: s95. doi: 10.1103/Physics.8.s95
    [84]
    FENG J S, XIANG H J. Anisotropic symmetric exchange as a new mechanism for multiferroicity [J]. Physical Review B, 2016, 93(17): 174416. doi: 10.1103/PhysRevB.93.174416
    [85]
    HUR N, PARK S, SHARMA P A, et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields [J]. Nature, 2004, 429(6990): 392–395. doi: 10.1038/nature02572
    [86]
    ZHOU L, DAI J H, CHAI Y S, et al. Realization of large electric polarization and strong magnetoelectric coupling in BiMn3Cr4O12 [J]. Advanced Materials, 2017, 29(44): 1703435. doi: 10.1002/adma.201703435
    [87]
    周龙, 王潇, 张慧敏, 等. 多阶有序钙钛矿多铁性材料的高压制备与物性 [J]. 物理学报, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878

    ZHOU L, WANG X, ZHANG H M, et al. High pressure synthesis and physical properties of multiferroic materials with multiply-ordered perovskite structure [J]. Acta Physica Sinica, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [88]
    LIU G X, LIU Z H, CHAI Y S, et al. Magnetic and electric field dependent anisotropic magnetoelectric multiferroicity in SmMn3Cr4O12 [J]. Physical Review B, 2021, 104(5): 054407.
    [89]
    TANDA S, TSUNETA T, OKAJIMA Y, et al. A Möbius strip of single crystals [J]. Nature, 2002, 417(6887): 397–398. doi: 10.1038/417397a
    [90]
    HAN D R, PAL S, LIU Y, et al. Folding and cutting DNA into reconfigurable topological nanostructures [J]. Nature Nanotechnology, 2010, 5(10): 712–717. doi: 10.1038/nnano.2010.193
    [91]
    GRAY A. Modern differential geometry of curves and surfaces with mathematica [M]. 2nd ed. Boca Raton: CRC Press, 1997.
    [92]
    LIU G X, PI M C, ZHOU L, et al. Physical realization of topological Roman surface by spin-induced ferroelectric polarization in cubic lattice [J]. Nature Communications, 2022, 13(1): 2373. doi: 10.1038/s41467-022-29764-w
    [93]
    WANG Z W, CHAI Y S, DONG S. First-principles demonstration of Roman-surface topological multiferroicity [J]. Physical Review B, 2023, 108(6): L060407. doi: 10.1103/PhysRevB.108.L060407
    [94]
    BAIBICH M N, BROTO J M, FERT A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices [J]. Physical Review Letters, 1988, 61(21): 2472–2475. doi: 10.1103/PhysRevLett.61.2472
    [95]
    MOTT N F. The electrical conductivity of transition metals [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1936, 153(880): 699-717.
    [96]
    PICKETT W E, MOODERA J S. Half metallic magnets [J]. Physics Today, 2001, 54(5): 39–44. doi: 10.1063/1.1381101
    [97]
    PARK J H, VESCOVO E, KIM H J, et al. Direct evidence for a half-metallic ferromagnet [J]. Nature, 1998, 392(6678): 794–796. doi: 10.1038/33883
    [98]
    HWANG H Y, CHEONG S W, ONG N P, et al. Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3 [J]. Physical Review Letters, 1996, 77(10): 2041–2044. doi: 10.1103/PhysRevLett.77.2041
    [99]
    KOBAYASHI K I, KIMURA T, SAWADA H, et al. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure [J]. Nature, 1998, 395(6703): 677–680. doi: 10.1038/27167
    [100]
    KOBAYASHI K I, KIMURA T, TOMIOKA Y, et al. Intergrain tunneling magnetoresistance in polycrystals of the ordered double perovskite Sr2FeReO6 [J]. Physical Review B, 1999, 59(17): 11159–11162. doi: 10.1103/PhysRevB.59.11159
    [101]
    LIU Z H, ZHANG S K, WANG X, et al. Realization of a half metal with a record-high Curie temperature in perovskite oxides [J]. Advanced Materials, 2022, 34(17): 2200626. doi: 10.1002/adma.202200626
    [102]
    WANG X, LIU Z H, DENG H S, et al. Comparative study on the magnetic and transport properties of B-site ordered and disordered CaCu3Fe2Os2O12 [J]. Inorganic Chemistry, 2022, 61(42): 16929–16935. doi: 10.1021/acs.inorgchem.2c03030
    [103]
    EL GANICH H, EL RHAZOUANI O, AHMED Y A, et al. Computation of the exchange interactions in CaCu3Fe2Os2O12 quadruple perovskite: Monte Carlo simulation [J]. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 150: 115696. doi: 10.1016/j.physe.2023.115696
    [104]
    MEHMOOD S, ALI Z, ALHARBI Y T, et al. Structural and magneto-elastic properties of the quadruple perovskites CaCu3B2Os2O12 (B=Mn–Ni): the Heisenberg model and DFT study [J]. Journal of Electronic Materials, 2023, 52(9): 5872–5883. doi: 10.1007/s11664-023-10555-y
    [105]
    LIU Z H, SUN Q, YE X B, et al. Quadruple perovskite oxide LaCu3Co2Re2O12: a ferrimagnetic half metal with nearly 100% B-site degree of order [J]. Applied Physics Letters, 2020, 117(15): 152402. doi: 10.1063/5.0025704
    [106]
    WANG X, LIU M, SHEN X D, et al. High-temperature ferrimagnetic half metallicity with wide spin-up energy gap in NaCu3Fe2Os2O12 [J]. Inorganic Chemistry, 2019, 58(1): 320–326. doi: 10.1021/acs.inorgchem.8b02404
    [107]
    WANG X, LIU Z H, YE X B, et al. Os doping suppressed Cu-Fe charge transfer and induced structural and magnetic phase transitions in LaCu3Fe4− x Os x O12 ( x = 1 and 2) [J]. Inorganic Chemistry, 2021, 60(9): 6298–6305. doi: 10.1021/acs.inorgchem.1c00009
    [108]
    YE X B, WANG X, LIU Z H, et al. Emergent physical properties of perovskite-type oxides prepared under high pressure [J]. Dalton Transactions, 2022, 51(5): 1745–1753. doi: 10.1039/D1DT03551G
    [109]
    LI X X, WU X J, LI Z Y, et al. Bipolar magnetic semiconductors: a new class of spintronics materials [J]. Nanoscale, 2012, 4(18): 5680–5685. doi: 10.1039/c2nr31743e
    [110]
    KATSNELSON M I, IRKHIN V Y, CHIONCEL L, et al. Half-metallic ferromagnets: from band structure to many-body effects [J]. Reviews of Modern Physics, 2008, 80(2): 315–378. doi: 10.1103/RevModPhys.80.315
    [111]
    YAMADA I, FUJII H, TAKAMATSU A, et al. Bifunctional oxygen reaction catalysis of quadruple manganese perovskites [J]. Advanced Materials, 2017, 29(4): 1603004. doi: 10.1002/adma.201603004
    [112]
    YE X B, SONG S Z, LI L L, et al. Aʹ-B intersite cooperation-enhanced water splitting in quadruple perovskite oxide CaCu3Ir4O12 [J]. Chemistry of Materials, 2021, 33(23): 9295–9305. doi: 10.1021/acs.chemmater.1c03015
    [113]
    AKIZUKI Y, YAMADA I, FUJITA K, et al. A-site-ordered perovskite MnCu3V4O12 with a 12-coordinated manganese (Ⅱ) [J]. Inorganic Chemistry, 2013, 52(19): 11538–11543. doi: 10.1021/ic401855j
    [114]
    AKIZUKI Y, YAMADA I, FUJITA K, et al. Rattling in the quadruple perovskite CuCu3V4O12 [J]. Angewandte Chemie International Edition, 2015, 54(37): 10870–10874. doi: 10.1002/anie.201504784
    [115]
    CONG J Z, ZHAI K, CHAI Y S, et al. Spin-induced multiferroicity in the binary perovskite manganite Mn2O3 [J]. Nature Communications, 2018, 9(1): 2996. doi: 10.1038/s41467-018-05296-0
    [116]
    BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides [J]. Science Advances, 2019, 5(2): eaav0693. doi: 10.1126/sciadv.aav0693
    [117]
    ALBRECHT E K, KARTTUNEN A J. Investigation on the predictive power of tolerance factor τ for A-site double perovskite oxides [J]. Dalton Transactions, 2023, 52(35): 12461–12469. doi: 10.1039/D3DT01990J
    [118]
    STRELTSOV S V, KHOMSKII D I. Jahn-Teller distortion and charge, orbital, and magnetic order in NaMn7O12 [J]. Physical Review B, 2014, 89(20): 201115(R).
    [119]
    JOHNSON R D, KHALYAVIN D D, MANUEL P, et al. Magneto-orbital ordering in the divalent A-site quadruple perovskite manganites AMn7O12 (A=Sr, Cd, and Pb) [J]. Physical Review B, 2017, 96(5): 054448. doi: 10.1103/PhysRevB.96.054448
    [120]
    BELIK A A, JOHNSON R D, KHALYAVIN D D. The rich physics of A-site-ordered quadruple perovskite manganites AMn7O12 [J]. Dalton Transactions, 2021, 50(43): 15458–15472. doi: 10.1039/D1DT02992D
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)

    Article Metrics

    Article views(439) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return