Volume 38 Issue 1
Feb 2024
Turn off MathJax
Article Contents
SUN Hao, YE Pengda, LIU Yuwei, JIN Meiling, LI Xiang. High-Pressure Synthesis of Copper-Based Rare-Earth Perovskite La1–xNdxCuO3 (0≤x≤1)[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 010104. doi: 10.11858/gywlxb.20230784
Citation: SUN Hao, YE Pengda, LIU Yuwei, JIN Meiling, LI Xiang. High-Pressure Synthesis of Copper-Based Rare-Earth Perovskite La1–xNdxCuO3 (0≤x≤1)[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 010104. doi: 10.11858/gywlxb.20230784

High-Pressure Synthesis of Copper-Based Rare-Earth Perovskite La1–xNdxCuO3 (0≤x≤1)

doi: 10.11858/gywlxb.20230784
  • Received Date: 08 Nov 2023
  • Rev Recd Date: 30 Dec 2023
  • Accepted Date: 02 Jan 2024
  • Issue Publish Date: 05 Feb 2024
  • The copper-based rare-earth perovskites La1–xNdxCuO3(0≤x≤1) have been synthesized in the two-stage Walker-type high-pressure apparatus. The refined crystal structure results revealed that La1–xNdxCuO3 (0≤x≤0.4) adopts a rhombohedral structure with the space group $R\overline 3 c $. When 0.5≤x≤0.7, a mixed phase with both $R\overline 3 c $ rhombohedral and Pnma orthorhombic structures was observed in the system. With a further increase in Nd3+ doping, the system exhibits a single Pnma orthorhombic phase when x=0.8, 0.9 and 1. A comprehensive structural phase diagram of La1–xNdxCuO3 (0≤x≤1) was established in this study, providing a new material platform for investigating the magnetic properties, metal-insulator transitions, and other physical property evolutions in rare-earth 3d transition metal oxides.

     

  • loading
  • [1]
    FIEBIG M, LOTTERMOSER T, FRÖHLICH D, et al. Observation of coupled magnetic and electric domains [J]. Nature, 2002, 419(6909): 818–820. doi: 10.1038/nature01077
    [2]
    WU J G, WANG J. Multiferroic behavior of BiFeO3–RTiO3 (Mg, Sr, Ca, Ba, and Pb) thin films [J]. Journal of Applied Physics, 2010, 108(2): 026101. doi: 10.1063/1.3452324
    [3]
    DONG S, YU R, YUNOKI S, et al. Double-exchange model study of multiferroic RMnO3 perovskites [J]. The European Physical Journal B, 2009, 71(3): 339–344. doi: 10.1140/epjb/e2009-00225-1
    [4]
    KHARE N. Handbook of high-temperature superconductor electronics [M]. New York: Marcel Dekker, 2003.
    [5]
    VON HELMOLT R, WECKER J, HOLZAPFEL B, et al. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnO x ferromagnetic films [J]. Physical Review Letters, 1993, 71(14): 2331–2333. doi: 10.1103/PhysRevLett.71.2331
    [6]
    GOODENOUGH J B, ZHOU J S. Orbital ordering in orthorhombic perovskites [J]. Journal of Materials Chemistry, 2007, 17(23): 2394–2405. doi: 10.1039/b701805c
    [7]
    MARTÍNEZ-LOPE M J, ALONSO J A, RETUERTO M, et al. Evolution of the crystal structure of RVO3 (R=La, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu, Y) perovskites from neutron powder diffraction data [J]. Inorganic Chemistry, 2008, 47(7): 2634–2640. doi: 10.1021/ic701969q
    [8]
    KUMARI S, PAUL S, RAJ S. Electronic structure of RVO3 (R=La and Y): effect of electron ( U) and exchange ( J) correlations [J]. Solid State Communications, 2017, 268: 20–25. doi: 10.1016/j.ssc.2017.09.017
    [9]
    SAGE M H. Orbital, charge and magnetic order of RVO3 perovskites [D]. Groningen: University of Groningen, 2006.
    [10]
    SINGH K D, PANDIT R, KUMAR R. Effect of rare earth ions on structural and optical properties of specific perovskite orthochromates; RCrO3 (R=La, Nd, Eu, Gd, Dy, and Y) [J]. Solid State Sciences, 2018, 85: 70–75. doi: 10.1016/j.solidstatesciences.2018.10.001
    [11]
    ZVEZDIN A K, GAREEVA Z V, CHEN X M. Multiferroic order parameters in rhombic antiferromagnets RCrO3 [J]. Journal of Physics: Condensed Matter, 2021, 33(38): 385801. doi: 10.1088/1361-648X/ac0dd6
    [12]
    SIBANDA E T. Structural, magnetic and electronic properties of rare-earth based chromium oxides [D]. Johannesburg: University of Johannesburg, 2023.
    [13]
    ALONSO J A, MARTÍNEZ-LOPE M J, CASAIS M T, et al. Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R=Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study [J]. Inorganic Chemistry, 2000, 39(5): 917–923. doi: 10.1021/ic990921e
    [14]
    KAJIMOTO R, MOCHIZUKI H, YOSHIZAWA H, et al. R-dependence of spin exchange interactions in RMnO3 (R=rare-earth ions) [J]. Journal of the Physical Society of Japan, 2005, 74(9): 2430–2433. doi: 10.1143/JPSJ.74.2430
    [15]
    WARSHI M K, MISHRA V, SAGDEO A, et al. Structural, optical and electronic properties of RFeO3 [J]. Ceramics International, 2018, 44(7): 8344–8349. doi: 10.1016/j.ceramint.2018.02.023
    [16]
    NAKHAEI M, KHOSHNOUD D S. Structural, magnetic, and electrical properties of RFeO3 (R=Dy, Ho, Yb & Lu) compounds [J]. Journal of Materials Science: Materials in Electronics, 2021, 32(11): 14286–14300. doi: 10.1007/s10854-021-05992-6
    [17]
    SINGH N, RHEE J Y, AULUCK S. Electronic and magneto-optical properties of rare-earth orthoferrites RFeO3 (R= Y, Sm, Eu, Gd and Lu) [J]. Journal of the Korean Physical Society, 2008, 53(2): 806–811. doi: 10.3938/jkps.53.806
    [18]
    ALONSO J A, MARTíNEZ-LOPE M J, DE LA CALLE C, et al. Preparation and structural study from neutron diffraction data of RCoO3 (R=Pr, Tb, Dy, Ho, Er, Tm, Yb, Lu) perovskites [J]. Journal of Materials Chemistry, 2006, 16(16): 1555–1560. doi: 10.1039/B515607F
    [19]
    ITOH M, HASHIMOTO J, YAMAGUCHI S, et al. Spin state and metal-insulator transition in LaCoO3 and RCoO3 (R=Nd, Sm and Eu) [J]. Physica B: Condensed Matter, 2000, 281/282: 510–511. doi: 10.1016/S0921-4526(99)01044-3
    [20]
    WANG W R, XU D P, SU W H, et al. Raman active phonons in RCoO3 (R=La, Ce, Pr, Nd, Sm, Eu, Gd, and Dy) perovskites [J]. Chinese Physics Letters, 2005, 22(9): 2400. doi: 10.1088/0256-307X/22/9/072
    [21]
    ZHOU J S, GOODENOUGH J B, DABROWSKI B. Exchange interaction in the insulating phase of RNiO3 [J]. Physical Review Letters, 2005, 95(12): 127204. doi: 10.1103/PhysRevLett.95.127204
    [22]
    FERNÁNDEZ-DÍAZ M, ALONSO J A, MARTÍNEZ-LOPE M, et al. Charge disproportionation in RNiO3 perovskites [J]. Physica B: Condensed Matter, 2000, 276/278: 218–221. doi: 10.1016/S0921-4526(99)01416-7
    [23]
    FREELAND J W, VAN VEENENDAAL M, CHAKHALIAN J. Evolution of electronic structure across the rare-earth RNiO3 series [J]. Journal of Electron Spectroscopy and Related Phenomena, 2016, 208: 56–62. doi: 10.1016/j.elspec.2015.07.006
    [24]
    KARPPINEN M, YAMAUCHI H, ITO T, et al. High-pressure synthesis and thermal decomposition of LaCuO3 [J]. Materials Science and Engineering: B, 1996, 41(1): 59–62. doi: 10.1016/S0921-5107(96)01624-8
    [25]
    ZHOU J S, ARCHIBALD W, GOODENOUGH J B. Approach to Curie-Weiss paramagnetism in the metallic perovskites La1– x Nd x CuO3 [J]. Physical Review B, 2000, 61(5): 3196–3199. doi: 10.1103/PhysRevB.61.3196
    [26]
    CHEN B H, WALKER D, SUARD E, et al. High pressure synthesis of NdCuO3– δ perovskites (0≤ δ≤0.5) [J]. Inorganic Chemistry, 1995, 34(8): 2077–2083. doi: 10.1021/ic00112a020
    [27]
    YU J B, LI Z H, SU W K. Synthesis of quinolines by N-Deformylation and aromatization via solvent-free, high-speed ball milling [J]. Synthetic Communications, 2013, 43(3): 361–374. doi: 10.1080/00397911.2011.599103
    [28]
    XU W H, LI C Y. Efficient synthesis of cucurbiturils and their derivatives using mechanochemical high-speed ball milling (HSBM) [J]. High Performance Polymers, 2021, 33(5): 509–518. doi: 10.1177/0954008320967057
    [29]
    HOSSEINI S G, POURMORTAZAVI S M, HAJIMIRSADEGHI S S. Thermal decomposition of pyrotechnic mixtures containing sucrose with either potassium chlorate or potassium perchlorate [J]. Combustion and Flame, 2005, 141(3): 322–326. doi: 10.1016/j.combustflame.2005.01.002
    [30]
    HUSBAND R J, O’BANNON E F, LIERMANN H P, et al. Compression-rate dependence of pressure-induced phase transitions in Bi [J]. Scientific Reports, 2021, 11(1): 14859. doi: 10.1038/s41598-021-94260-y
    [31]
    SOYKAN C, ÖZDEMIR KART S. Structural, mechanical and electronic properties of ZnTe polymorphs under pressure [J]. Journal of Alloys and Compounds, 2012, 529: 148–157. doi: 10.1016/j.jallcom.2012.02.170
    [32]
    CHEN X R, LI X F, CAI L C, et al. Pressure induced phase transition in ZnS [J]. Solid State Communications, 2006, 139(5): 246–249. doi: 10.1016/j.ssc.2006.05.043
    [33]
    SUZUKI T, YAGI T, AKIMOTO S. Precise determination of transition pressure of GaAs [C]//22nd High Pressure Conference. 1981.
    [34]
    CHENG J G, ISHII T, KOJITANI H, et al. High-pressure synthesis of the BaIrO3 perovskite: a Pauli paramagnetic metal with a Fermi liquid ground state [J]. Physical Review B, 2013, 88(20): 205114. doi: 10.1103/PhysRevB.88.205114
    [35]
    YOUNG R A. The Rietveld method [M]. Oxford: International Union of Crystallography, 1993.
    [36]
    BRINGLEY J F, SCOTT B A, LA PLACA S J, et al. Structure and properties of the LaCuO3– δ perovskites [J]. Physical Review B, 1993, 47(22): 15269. doi: 10.1103/PhysRevB.47.15269
    [37]
    ZHOU J S, GOODENOUGH J B, DABROWSKI B. Transition from Curie-Weiss to enhanced Pauli paramagnetism in RNiO3 (R=La, Pr, … Gd) [J]. Physical Review B, 2003, 67(2): 020404. doi: 10.1103/PhysRevB.67.020404
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views(133) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return