
Citation: | LI Jun, JIN Shangjian, ZHAO Shuang, YAO Daoxin, LI Manrong. Prediction of Synthesis Condition and Magnetic Property of Screened Metallic Double-Perovskite Antiferromagnet Mn2FeOsO6[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 010105. doi: 10.11858/gywlxb.20230783 |
自1996年German-French Research Institute Saint Louis (ISL)实验室第一次提出横向效应增强型侵彻体(Penetrator with Enhanced Lateral Effect, PELE)概念以来, 国内外学者对PELE弹丸的作用过程进行了广泛研究。在PELE弹丸壳体断裂的机理方面, Kesberg等人[1]认为壳体侵彻目标的内核因密度较低而被压缩并沿径向膨胀, 导致壳体内壁压力剧增至吉帕级, 弹丸穿透目标后能量瞬间释放, 导致壳体破裂成大量破片。Paulus等人[2]结合Recht-Ipson模型[3]和Mott模型[4]计算出弹体的剩余速度、装填物的压力以及壳体破片的径向飞散速度, 并且用弱激波理论描述了PELE弹丸壳体的断裂过程。对于PELE弹丸壳体断裂的研究, 除了可从力学和能量的角度定性地解释PELE弹丸壳体断裂过程外, 还可以从损伤断裂的角度, 具体分析其在侵彻过程中的断裂机理。
在研究材料动态拉伸断裂方面有许多模型, Seaman、Curran和Shockey[5]从实验出发, 基于微损伤的统计性分析结果, 提出了成核与长大模型(Nucleation and Growth, NAG)。但是NAG模型计算需要大量的实验参数, 实用性比较差。封加波等人[6-7]在NAG模型的基础上利用单孔洞近似, 从能量平衡的角度出发, 提出了简单实用的损伤度函数模型。本研究基于损伤度模型, 结合PELE弹丸侵彻过程, 将PELE弹丸壳体的膨胀断裂过程分为加速膨胀和匀速膨胀两个阶段, 推导出这两个阶段PELE弹丸壳体的损伤断裂方程, 并根据损伤断裂方程分析影响PELE弹丸横向效应的内在机理。
PELE弹丸壳体一般为高密度金属或合金。金属或合金材料在高应变率下的变形过程比较复杂, 理论上通常把动态变形过程划分为几个阶段, 如弹性阶段、塑性阶段和失效阶段, 对不同变形阶段需要用不同的本构关系表达式进行描述。动态塑性本构方程可以写为
σ=φ(ep,˙ep) |
(1) |
式中:σ为材料的动态屈服应力, ep为径向塑性自然应变,
为径向塑性自然应变率。
根据文献[7], 金属壳体的动态本构关系可以表示为
σ=σ0+Kep+η˙ep |
(2) |
式中:σ0为静态屈服强度, K为材料强化系数, η为材料黏度系数。
对于柱壳结构有
ep=ln(R(t)R0) |
(3) |
˙ep=u(t)/R(t) |
(4) |
εp=R(t)−R0R0 |
(5) |
式中:R0为壳体初始半径, R(t)为壳体实时半径, R0、R(t)均是壳体内径和外径的平均值, εp为径向塑性应变, u(t)为壳体径向膨胀速度。结合(3)式和(5)式可以得到ep与εp的关系
ep=ln(1+εp) |
(6) |
将(6)式代入(2)式, 可以将动态本构关系改写成以下形式
σ=σ0+Kln(1+εP)+η˙ep |
(7) |
本研究所采用的断裂准则建立在封加波提出的损伤度模型的基础上。金属材料的损伤度包括在应力波作用下材料初始损伤缺陷及其发展, 以及新产生的损伤缺陷及其发展, 而且材料的损伤度具有累积效应。在PELE弹丸壳体动态断裂的过程中, 为了考虑材料的损伤累积效应, 引入损伤变量D(t), D(t)定义为材料某一截面上微孔洞所占的面积比。参照文献[6], 有如下形式的方程
dDdt=[(1−D)(σ−σ0)]2ηK |
(8) |
求解方程(8)式需要知道σ(或εp和随时间变化的规律。从(4)式和(5)式看出, 需要知道壳体膨胀的实时半径R(t)和壳体径向膨胀速度u(t)的函数形式。在处理实际问题时, 很难求出解析表达式, 一般需要结合实验结果求解。
PELE弹丸是一种基于物理效应、不需要装填炸药和引信的新概念弹药, 主要用于防空、反导、城市作战等领域。PELE弹丸由壳体和内核组成, 壳体一般为密度较大的金属材料, 内核是密度及强度比较低的金属或聚合物。高密度金属壳体对靶板具有良好的侵彻性能, 而内核材料在侵彻过程中被封闭压缩, 巨大的压力在内核中迅速积聚, 弹丸穿透靶板后能量瞬间释放导致外壳破裂解体。
PELE的横向增强效应作用过程分为3个主要时段和一个后效作用时段[1]。如图 1所示, 第1时段, 当弹丸击中目标后, 外层高密度壳体侵彻目标, 内核因材料强度低而无法侵彻, 将会在靶前停滞而被压缩; 第2时段, 封闭压缩过程中产生的高压将使内核材料沿径向膨胀, 导致壳体内壁压力急剧增加, 可达到数吉帕; 第3时段, 当应力应变达到壳体的破坏极限时, 出靶后的卸载应力波致使外层弹体破裂成大小不同的破片。后效作用时段则是壳体破片的径向飞散以及内核和塞块间继续相互作用的过程。
图 2给出了PELE弹丸计算模型, 其中壳体材料为35CrMnSi, 长度为105 mm, 外径为30 mm, 内径为18 mm, 弹底部厚为15 mm; 内核材料为聚乙烯, 长度为90 mm, 直径为18 mm; 靶板材料为装甲钢, 厚度为8 mm。网格平均尺寸为壳体1 mm, 内核1.2 mm, 靶板采用变步长网格(0.5~10 mm)以提高计算效率。为了获得侵彻过程中的时间历程参数, 在弹丸模型的壳体中心线沿轴向均匀分布4个观测点(Gauge点), 每个观测点间隔20 mm, 如图 2所示。
表 1、表 2分别为材料模型和材料参数。数值计算采用拉格朗日方法, 材料均采用侵蚀算法, 靶板采用材料应变失效模型, 壳体使用有效应力失效模型。采用Stochastic模型[8]模拟壳体随机断裂, 其中材料弱化点的破坏概率在[0, 1]范围为
Component | Material species | Equation of state | Strength model | Invalidation model |
Shell | 35CrMnSi | Linear | Johnson-Cook | Principal stress |
Core | Polyethylene | Shock | von-Mises | - |
Target plate | RHA | Shock | von-Mises | Material strain |
Material | ρ/(g/cm3) | E/(GPa) | σ/(MPa) | G/(GPa) | ν |
35CrMnSi | 7.8 | 210 | 1 270 | 81 | 0.33 |
Polyethylene | 0.94 | 1.5 | 0.26 | 0.55 | 0.45 |
RHA | 7.8 | 171 | 1400 | 64.1 | 0.33 |
P=1−exp(−ceγε/γ) |
(9) |
式中:P为应变为ε时的网格破坏概率, c、γ取决于材料性质, 根据文献[8], 取c=0.467, γ=10。
PELE弹丸以700 m/s的着靶速度垂直侵彻8 mm厚的装甲钢靶板。壳体中Gauge点沿壳体径向速度变化曲线如图 3所示。从图 3中看出, PELE侵彻过程第2时段, 壳体径向先经历短暂加速膨胀阶段, 膨胀速度达到一个较大值; PELE侵彻过程第3时段, 壳体膨胀速度小幅震荡并趋于稳定。
PELE实验弹丸参数:外径为30 mm, 内径为18 mm, 长度为105 mm; 壳体材料采用35CrMnSi合金钢, 内核为聚乙烯, 长度为90 mm, 靶板为装甲钢, 厚度为8 mm; 装配全弹质量为350 g。
实验弹采用轻气炮发射。弹丸着靶和出靶分别设置了测速点探针, 以测量着靶速度和弹丸穿透靶板的时间。为了获得弹丸头部出靶时的膨胀速度, 设计了一套环形电探针测量装置。实验装置示意图如图 4所示, 实验装置各部分如图 5所示。
表 3分别统计了3发有效实验的弹丸着靶速度、弹丸头部从着靶到出靶的穿靶时间, 以及出靶时弹丸头部的径向速度。应该指出的是, 由于弹丸穿靶时间极短, 弹丸出靶时头部的径向速度比较大, 探针测试存在一定的误差。
Experimental No. | Velocity/(m/s) | Time/(μs) | Radical velocity/(m/s) |
1 | 643 | 8.4 | 127 |
2 | 694 | 7.2 | 142 |
3 | 762 | 6.5 | 153 |
壳体膨胀断裂主要处于PELE侵彻过程的第2时段和第3时段。壳体动态断裂过程可以描述为:应力波从内核传入壳体内壁, 壳壁开始加速膨胀, 在应力波多次反射效应下膨胀速度振荡衰减, 直至最终趋于平稳。其衰减规律基本上按余弦函数变化[9-10], 所以径向速度公式可以写为
u(t)={Ctt0⩽t<t1Ae−λtcos(ψt)+u0t1⩽t<tc |
(10) |
式中:A、ψ、C、λ为与总体模型有关的参数, u0为稳态时的径向速度值。t0为应力波传到壳体外壁的时刻, t1为壳体膨胀加速结束的时刻, tc为壳体发生贯穿性断裂的时刻。
根据侵彻过程壳体的膨胀规律, 可以将PELE壳体断裂过程分为壳体加速膨胀阶段和壳体匀速膨胀阶段。调整数值模拟中弹丸的着靶速度, 使其工况与3发实验相吻合, 对比数值模拟结果与实验结果发现, PELE壳体加速膨胀的时间与壳体从着靶到出靶的时间相吻合。可以看出当壳体处于靶板内时, 壳体处于加速状态; 当壳体出靶后, 壳体匀速膨胀。
根据PELE侵彻过程壳体的膨胀规律, 将PELE壳体断裂过程分为两个阶段:壳体加速膨胀阶段和壳体匀速膨胀阶段。
第1阶段:壳体加速膨胀阶段。假定自然应变率可以近似看作常数
˙ep=u(t)/R(t)=c |
(11) |
另外
dt=dep/˙ep |
(12) |
对(12)式积分得
t1−t0=ep1/˙ep |
(13) |
将(7)代入(8), 在[t0, t1]内积分得
D1=1−3ω1(ω1+ep1)3+3ω1−ω31 |
(14) |
式中:D1为t1时刻的损伤度。(14)式中
ω1=(K/η)˙ep |
(15) |
通过实验结果可以得到代入(13)式可以求出
将
代入(14)式求出D1。
第2阶段:壳体匀速膨胀阶段。第1阶段结束时刻即为第2阶段初始时刻。依据PELE壳体膨胀规律, 给出描述壳体膨胀速度的变化规律为
u(t)=Ae−λtcos(ψt)+u0 |
(16) |
(16) 式反映应力波多次反射引起的衰减振荡, 代表了壳体膨胀速度的真实情况, 但直接代入损伤度方程难以求解。为了方便积分, 这里按照能量等效原理取均值, 假设柱壳膨胀速度u(t)等于常数
u(t)=u0 |
(17) |
由于
˙ep=u(t)/R(t) |
(18) |
˙ep2=u(t)/R2 |
(19) |
u(t)=dR(t)/dt |
(20) |
将(5)式、(18)式、(19)式代入(20)式, 得
dt=dR(t)/u(t)=dεp/˙ep2 |
(21) |
式中:
为第2阶段的初始径向塑性自然应变率, R2为第2阶段壳体的初始半径。
将(7)式、(17)式、(21)式代入(8)式, 在[t1, tc]积分得
∫DcD1dD(1−D)2=∫εpcεp11ω2[ln(1+εp)+ω21+εp]dεp |
(22) |
式中:
为壳体发生贯穿性破坏的损伤度。经过整理, 最终得
εpc−εp1(1+εpc)(1+εp1)ω22+[(epc)2−(ep1)2−Dc−D1(1−Dc)(1−D1)]ω2+(1+εpc)[(epc)2−2epc+2]−(1+εp1)[(ep1)2−2ep1+2]=0 |
(23) |
式中:
为第一阶段壳体材料径向塑形应变。由(6)式知
与
满足以下关系式
ep1=ln(1+εp1) |
(24) |
(23) 式为PELE弹丸壳体的损伤断裂方程。第1阶段的自然应变率和第2阶段的初始半径R2、径向速度u0可以通过实验得到, 通过R2和u0可以求出
而壳体材料参数σ0、K、η和Dc均可以通过查找手册和文献获得, 最终可以得到一个确定的临界应变
作为损伤断裂判据。
将(17)式、(19)式代入(21)式, 在[t1, tc]内积分可得壳体发生贯穿断裂的时刻tc
tc−t1=R2(εpc−εp1)/u0 |
(25) |
对于35CrMnSi, 参照文献[10], 壳体特征参数取η=-12 kPa·s, K=1.66 GPa, ωλ=3.5 kJ/m2, D0=10-5, Dc=0.2, σ0=0.72 GPa。当初始半径R0=15 mm的PELE弹丸以1 km/s速度着靶时, 结合实验数据, 得到第1阶段的自然应变率和第2阶段的初始半径R2及径向膨胀速度u0, 见表 4。
t/(μs) | ˙ep/(104 s−1) | R2/(mm) | u0/(m/s) |
8.4 | 2.62 | 17.7 | 127 |
7.2 | 1.91 | 18.6 | 142 |
6.5 | 1.71 | 19.9 | 153 |
将第2阶段的初始半径R2及径向膨胀速度u0代入(19)式, 得到第2阶段的初始应变率将第一阶段
代入(13)式可以求出
将
代入(14)式求出D1; 同时将
代入(24)式求出
将
代入(23)式, 得到3个典型时刻临界应变
如图 6所示。从图 6中可以看出, 在一定速度范围内, 随着弹丸着靶速度的增加, 壳体断裂的临界应变明显降低。
(1) PELE弹丸在侵彻过程中壳体膨胀断裂可以分为加速膨胀和匀速膨胀两个阶段, 在封加波提出的损伤度模型的基础上, 得到了PELE弹丸壳体的损伤断裂方程和断裂判据。
(2) 根据PELE弹丸壳体损伤断裂方程, 计算出PELE弹丸壳体膨胀断裂过程的参数, 分析了弹丸着靶速度与壳体断裂之间的关系, 可为PELE弹丸设计提供理论指导。
致谢: 感谢胡玉涛博士和曹雷博士在公式推导和实验方面给予的帮助。[1] |
FUSIL S, GARCIA V, BARTHÉLÉMY A, et al. Magnetoelectric devices for spintronics [J]. Annual Review of Materials Research, 2014, 44: 91–116. doi: 10.1146/annurev-matsci-070813-113315
|
[2] |
KOBAYASHI K I, KIMURA T, SAWADA H, et al. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure [J]. Nature, 1998, 395(6703): 677–680. doi: 10.1038/27167
|
[3] |
ZHOU J P, DASS R, YIN H Q, et al. Enhancement of room temperature magnetoresistance in double perovskite ferrimagnets [J]. Journal of Applied Physics, 2000, 87(9): 5037–5039. doi: 10.1063/1.373240
|
[4] |
SERRAT D, DE TERESA J M, IBARRA M R. Double perovskites with ferromagnetism above room temperature [J]. Journal of Physics: Condensed Matter, 2007, 19(2): 023201. doi: 10.1088/0953-8984/19/2/023201
|
[5] |
MORROW R, MISHRA R, RESTREPO O D, et al. Independent ordering of two interpenetrating magnetic sublattices in the double perovskite Sr2CoOsO6 [J]. Journal of the American Chemical Society, 2013, 135(50): 18824–18830. doi: 10.1021/ja407342w
|
[6] |
FENG H L, ARAI M, MATSUSHITA Y, et al. High-temperature ferrimagnetism driven by lattice distortion in double perovskite Ca2FeOsO6 [J]. Journal of the American Chemical Society, 2014, 136(9): 3326–3329. doi: 10.1021/ja411713q
|
[7] |
CHEN J, WANG X, HU Z W, et al. Enhanced magnetization of the highest- TC ferrimagnetic oxide Sr2CrOsO6 [J]. Physical Review B, 2020, 102(18): 184418. doi: 10.1103/PhysRevB.102.184418
|
[8] |
KROCKENBERGER Y, MOGARE K, REEHUIS M, et al. Sr2CrOsO6: end point of a spin-polarized metal-insulator transition by 5 d band filling [J]. Physical Review B, 2007, 75(2): 020404. doi: 10.1103/PhysRevB.75.020404
|
[9] |
WAKABAYASHI Y K, KROCKENBERGER Y, TSUJIMOTO N, et al. Ferromagnetism above 1 000 K in a highly cation-ordered double-perovskite insulator Sr3OsO6 [J]. Nature Communications, 2019, 10(1): 535.
|
[10] |
LI R J, ZHU X Z, FU Q F, et al. Nanosheet-based Nb12O29 hierarchical microspheres for enhanced lithium storage [J]. Chemical Communications, 2019, 55(17): 2493–2496. doi: 10.1039/C8CC09924C
|
[11] |
MCCALL S, CAO G, CROW J E, et al. Metamagnetism of single crystal Ca3Ru2O7 in high magnetic fields [J]. Physica B: Condensed Matter, 1998, 246/247: 144–148. doi: 10.1016/S0921-4526(98)00042-8
|
[12] |
KOMAREK A C, STRELTSOV S V, ISOBE M, et al. CaCrO3: an anomalous antiferromagnetic metallic oxide [J]. Physical Review Letters, 2008, 101(16): 167204. doi: 10.1103/PhysRevLett.101.167204
|
[13] |
WANG B X, ROSENKRANZ S, RUI X, et al. Antiferromagnetic defect structure in LaNiO3– δ single crystals [J]. Physical Review Materials, 2018, 2(6): 064404. doi: 10.1103/PhysRevMaterials.2.064404
|
[14] |
LI M R, RETUERTO M, WALKER D, et al. Magnetic-structure-stabilized polarization in an above-room-temperature ferrimagnet [J]. Angewandte Chemie International Edition, 2014, 53(40): 10774–10778. doi: 10.1002/anie.201406180
|
[15] |
LI M R, MCCABE E E, STEPHENS P W, et al. Magnetostriction-polarization coupling in multiferroic Mn2MnWO6 [J]. Nature Communications, 2017, 8(1): 2037. doi: 10.1038/s41467-017-02003-3
|
[16] |
LI M R, RETUERTO M, DENG Z, et al. Giant magnetoresistance in the half-metallic double-perovskite ferrimagnet Mn2FeReO6 [J]. Angewandte Chemie, 2015, 127(41): 12237–12241. doi: 10.1002/ange.201506456
|
[17] |
LI M R, RETUERTO M, STEPHENS P W, et al. Low-temperature cationic rearrangement in a bulk metal oxide [J]. Angewandte Chemie International Edition, 2016, 55(34): 9862–9867. doi: 10.1002/anie.201511360
|
[18] |
MORROW R, SOLIZ J R, HAUSER A J, et al. The effect of chemical pressure on the structure and properties of A2CrOsO6 (A = Sr, Ca) ferrimagnetic double perovskite [J]. Journal of Solid State Chemistry, 2016, 238: 46–52. doi: 10.1016/j.jssc.2016.02.025
|
[19] |
HOU Y S, XIANG H J, GONG X G. Lattice-distortion induced magnetic transition from low-temperature antiferromagnetism to high-temperature ferrimagnetism in double perovskites A2FeOsO6 (A = Ca, Sr) [J]. Scientific Reports, 2015, 5(1): 13159. doi: 10.1038/srep13159
|
[20] |
NAVEEN K, REEHUIS M, ADLER P, et al. Reentrant magnetism at the borderline between long-range antiferromagnetic order and spin-glass behavior in the B-site disordered perovskite system Ca2− x Sr x FeRuO6 [J]. Physical Review B, 2018, 98(22): 224423. doi: 10.1103/PhysRevB.98.224423
|
[21] |
ANDERSON M T, GREENWOOD K B, TAYLOR G A, et al. B-cation arrangements in double perovskites [J]. Progress in Solid State Chemistry, 1993, 22(3): 197–233. doi: 10.1016/0079-6786(93)90004-B
|
[22] |
GIBB T C. A study of superexchange interactions in the perovskite Sr2FeRuO6 by Monte Carlo analysis [J]. Journal of Materials Chemistry, 2005, 15(37): 4015–4019. doi: 10.1039/b506752a
|
[23] |
CHANG J, LEE K, JUNG M H, et al. Emergence of room-temperature magnetic ordering in artificially fabricated ordered-double-perovskite Sr2FeRuO6 [J]. Chemistry of Materials, 2011, 23(11): 2693–2696. doi: 10.1021/cm200454z
|
[24] |
LI M R, CROFT M, STEPHENS P W, et al. Mn2FeWO6: a new Ni3TeO6-type polar and magnetic oxide [J]. Advanced Materials, 2015, 27(13): 2177–2181. doi: 10.1002/adma.201405244
|
[25] |
TAN X Y, MCCABE E E, ORLANDI F, et al. MnFe0.5Ru0.5O3: an above-room-temperature antiferromagnetic semiconductor [J]. Journal of Materials Chemistry C, 2019, 7(3): 509–522. doi: 10.1039/C8TC05059G
|
[26] |
FRANK C E, MCCABE E E, ORLANDI F, et al. Mn2CoReO6: a robust multisublattice antiferromagnetic perovskite with small A-site cations [J]. Chemical Communications, 2019, 55(23): 3331–3334. doi: 10.1039/C9CC00038K
|
[27] |
LI M R, STEPHENS P W, CROFT M, et al. Mn2(Fe0.8Mo0.2)MoO6: a double perovskite with multiple transition metal sublattice magnetic effects [J]. Chemistry of Materials, 2018, 30(14): 4508–4514. doi: 10.1021/acs.chemmater.8b00250
|
[28] |
CAI G H, GREENBLATT M, LI M R. Polar magnets in double corundum oxides [J]. Chemistry of Materials, 2017, 29(13): 5447–5457. doi: 10.1021/acs.chemmater.7b01567
|
[29] |
LI M R, HODGES J P, RETUERTO M, et al. Mn2MnReO6: synthesis and magnetic structure determination of a new transition-metal-only double perovskite canted antiferromagnet [J]. Chemistry of Materials, 2016, 28(9): 3148–3158. doi: 10.1021/acs.chemmater.6b00755
|
[30] |
ARÉVALO-LÓPEZ A M, MCNALLY G M, ATTFIELD J P. Large magnetization and frustration switching of magnetoresistance in the double-perovskite ferrimagnet Mn2FeReO6 [J]. Angewandte Chemie International Edition, 2015, 54(41): 12074–12077. doi: 10.1002/anie.201506540
|
[31] |
ARÉVALO-LÓPEZ A M, STEGEMANN F, ATTFIELD J P. Competing antiferromagnetic orders in the double perovskite Mn2MnReO6 (Mn3ReO6) [J]. Chemical Communications, 2016, 52(32): 5558–5560. doi: 10.1039/C6CC01290F
|
[32] |
VASALA S, KARPPINEN M. A2B 'B ''O6 perovskites: a review [J]. Progress in Solid State Chemistry, 2015, 43(1/2): 1–36. doi: 10.1016/j.progsolidstchem.2014.08.001
|
[33] |
GILIOLI E, EHM L. High pressure and multiferroics materials: a happy marriage [J]. IUCrJ, 2014, 1(6): 590–603. doi: 10.1107/S2052252514020569
|
[34] |
BELIK A A, YI W. High-pressure synthesis, crystal chemistry and physics of perovskites with small cations at the A site [J]. Journal of Physics: Condensed Matter, 2014, 26(16): 163201. doi: 10.1088/0953-8984/26/16/163201
|
[35] |
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 1976, 32(5): 751–767.
|
[36] |
SCHULZ H, BAYER G. Structure determination of Mg3TeO6 [J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1971, 27(4): 815–821. doi: 10.1107/S0567740871002954
|
[37] |
SELB E, DECLARA L, BAYARJARGAL L, et al. Crystal structure and properties of a UV-transparent high-pressure polymorph of Mg3TeO6 with second harmonic generation response [J]. European Journal of Inorganic Chemistry, 2019, 2019(43): 4668–4676. doi: 10.1002/ejic.201900998
|
[38] |
GHOSH A, CHEN K H, QIU X S, et al. Anisotropy in the magnetic interaction and lattice-orbital coupling of single crystal Ni3TeO6 [J]. Scientific Reports, 2018, 8(1): 15779. doi: 10.1038/s41598-018-33976-w
|
[39] |
FERNÁNDEZ-CATALÁ J, SINGH H, WANG S B, et al. Hydrothermal synthesis of Ni3TeO6 and Cu3TeO6 nanostructures for magnetic and photoconductivity applications [J]. ACS Applied Nano Materials, 2023, 6(6): 4887–4897. doi: 10.1021/acsanm.3c00630
|
[40] |
HAN Y F, ZENG Y J, HENDRICKX M, et al. Universal A-cation splitting in LiNbO3-type structure driven by intrapositional multivalent coupling [J]. Journal of the American Chemical Society, 2020, 142(15): 7168–7178. doi: 10.1021/jacs.0c01814
|
[41] |
FUJITA K, KAWAMOTO T, YAMADA I, et al. LiNbO3-type InFeO3: room-temperature polar magnet without second-order Jahn-Teller active ions [J]. Chemistry of Materials, 2016, 28(18): 6644–6655. doi: 10.1021/acs.chemmater.6b02783
|
[42] |
VARGA T, KUMAR A, VLAHOS E, et al. Coexistence of weak ferromagnetism and ferroelectricity in the high pressure LiNbO3-type phase of FeTiO3 [J]. Physical Review Letters, 2009, 103(4): 047601. doi: 10.1103/PhysRevLett.103.047601
|
[43] |
BELIK A A, STEFANOVICH S Y, LAZORYAK B I, et al. BiInO3: a polar oxide with GdFeO3-type perovskite structure [J]. Chemistry of Materials, 2006, 18(7): 1964–1968. doi: 10.1021/cm052627s
|
[44] |
VASYLECHKO L, MATKOVSKII A, SAVYTSKII D, et al. Crystal structure of GdFeO3-type rare earth gallates and aluminates [J]. Journal of Alloys and Compounds, 1999, 291(1/2): 57–65. doi: 10.1016/S0925-8388(99)00247-9
|
[45] |
MALYI O I, DALPIAN G M, ZHAO X G, et al. Realization of predicted exotic materials: the burden of proof [J]. Materials Today, 2020, 32: 35–45. doi: 10.1016/j.mattod.2019.08.003
|
[46] |
LUFASO M W, WOODWARD P M. Prediction of the crystal structures of perovskites using the software program SPuDS [J]. Acta Crystallographica Section B: Structural Science, 2001, 57(6): 725–738. doi: 10.1107/S0108768101015282
|
[47] |
BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides [J]. Science Advances, 2019, 5(2): eaav0693. doi: 10.1126/sciadv.aav0693
|
[48] |
FILIP M R, GIUSTINO F. The geometric blueprint of perovskites [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(21): 5397–5402. doi: 10.1073/pnas.1719179115
|
[49] |
SUN Q D, YIN W J. Thermodynamic stability trend of cubic perovskites [J]. Journal of the American Chemical Society, 2017, 139(42): 14905–14908. doi: 10.1021/jacs.7b09379
|
[50] |
CHEN P, LIU B G. Giant ferroelectric polarization and electric reversal of strong spontaneous magnetization in multiferroic Bi2FeMoO6 [J]. Journal of Magnetism and Magnetic Materials, 2017, 441: 497–502. doi: 10.1016/j.jmmm.2017.06.019
|
[51] |
CHEN P, GRISOLIA M N, ZHAO H J, et al. Energetics of oxygen-octahedra rotations in perovskite oxides from first principles [J]. Physical Review B, 2018, 97(2): 024113. doi: 10.1103/PhysRevB.97.024113
|
[52] |
SU H P, LI S F, HAN Y F, et al. Predicted polymorph manipulation in an exotic double perovskite oxide [J]. Journal of Materials Chemistry C, 2019, 7(39): 12306–12311. doi: 10.1039/C9TC03367J
|
[53] |
HAN Y F, WU M X, GUI C R, et al. Data-driven computational prediction and experimental realization of exotic perovskite-related polar magnets [J]. NPJ Quantum Materials, 2020, 5(1): 92. doi: 10.1038/s41535-020-00294-2
|
[54] |
MURNAGHAN F D. The compressibility of media under extreme pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 1944, 30(9): 244–247. doi: 10.1073/pnas.30.9.244
|
[55] |
HALDER A, GHOSH A, DASGUPTA T S. Machine-learning-assisted prediction of magnetic double perovskites [J]. Physical Review Materials, 2019, 3(8): 084418. doi: 10.1103/PhysRevMaterials.3.084418
|
[56] |
HALDER A, NAFDAY D, SANYAL P, et al. Computer predictions on Rh-based double perovskites with unusual electronic and magnetic properties [J]. NPJ Quantum Materials, 2018, 3(1): 17. doi: 10.1038/s41535-018-0091-6
|
[57] |
ZHAO H J, ÍÑIGUEZ J, REN W, et al. Atomistic theory of hybrid improper ferroelectricity in perovskites [J]. Physical Review B, 2014, 89(17): 174101. doi: 10.1103/PhysRevB.89.174101
|
[58] |
BENEDEK N A, FENNIE C J. Why are there so few perovskite ferroelectrics [J]. The Journal of Physical Chemistry C, 2013, 117(26): 13339–13349. doi: 10.1021/jp402046t
|
[59] |
HOWARD C J, KENNEDY B J, WOODWARD P M. Ordered double perovskites—a group-theoretical analysis [J]. Acta Crystallographica Section B, 2003, 59(4): 463–471. doi: 10.1107/S0108768103010073
|
[60] |
GLAZER A M. The classification of tilted octahedra in perovskites [J]. Acta Crystallographica Section B, 1972, 28(11): 3384–3392.
|
[61] |
RONDINELLI J M, MAY S J, FREELAND J W. Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery [J]. MRS Bulletin, 2012, 37(3): 261–270. doi: 10.1557/mrs.2012.49
|
[62] |
ZHOU Q D, TAN T Y, KENNEDY B J, et al. Crystal structures and phase transitions in Sr doped Ba2InTaO6 perovskites [J]. Journal of Solid State Chemistry, 2013, 206: 122–128. doi: 10.1016/j.jssc.2013.08.007
|
[63] |
FU W T, GÖTZ R J, IJDO D J W. On the symmetry and crystal structures of Ba2LaIrO6 [J]. Journal of Solid State Chemistry, 2010, 183(2): 419–424. doi: 10.1016/j.jssc.2009.12.006
|
[64] |
GUENNOU M, BOUVIER P, CHEN G S, et al. Multiple high-pressure phase transitions in BiFeO3 [J]. Physical Review B, 2011, 84(17): 174107. doi: 10.1103/PhysRevB.84.174107
|
[65] |
XIE T, GROSSMAN J C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties [J]. Physical Review Letters, 2018, 120(14): 145301. doi: 10.1103/PhysRevLett.120.145301
|
[66] |
WANG Y C, MA Y M. Perspective: crystal structure prediction at high pressures [J]. The Journal of Chemical Physics, 2014, 140(4): 040901. doi: 10.1063/1.4861966
|
[67] |
KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals [J]. Physical Review B, 1993, 47(1): 558–561. doi: 10.1103/PhysRevB.47.558
|
[68] |
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
|
[69] |
KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium [J]. Physical Review B, 1994, 49(20): 14251–14269. doi: 10.1103/PhysRevB.49.14251
|
[70] |
BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
|
[71] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
|
[72] |
TOTH S, LAKE B. Linear spin wave theory for single-Q incommensurate magnetic structures [J]. Journal of Physics: Condensed Matter, 2015, 27(16): 166002. doi: 10.1088/0953-8984/27/16/166002
|
[73] |
SOLANA-MADRUGA E, ALHARBI, K N, HERZ M, et al. Unconventional magnetism in the high pressure ‘all transition metal’ double perovskite Mn2NiReO6 [J]. Chemical Communications, 2020, 56(83): 12574–12577. doi: 10.1039/D0CC04756B
|
[74] |
LI S D, CHEN P, LIU B G. Promising ferrimagnetic double perovskite oxides towards high spin polarization at high temperature [J]. AIP Advances, 2013, 3(1): 012107. doi: 10.1063/1.4775352
|
[1] | PENG Yi, DENG Zheng, LI Wenmin, SHI Luchuan, ZHAO Jianfa, ZHANG Jun, WANG Xiancheng, JIN Changqing. Cooling Fields Induced Giant Magnetoresistance in High-Pressure Synthesized Double Perovskite Y2NiIrO6[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 010103. doi: 10.11858/gywlxb.20230781 |
[2] | WU Xueqian, WANG Lingrui, YUAN Yifang, MA Liang, GUO Haizhong. Structural and Optical Properties of Telluride Double PerovskiteCs2TeBr6 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050103. doi: 10.11858/gywlxb.20230708 |
[3] | WANG Tengfei, LI Xiaolei, LI Lu, LI Dong, WANG Junkai. Density Functional Theory of New Double “A” Layer MAX Phase V2Ga2C under High Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 032202. doi: 10.11858/gywlxb.20200658 |
[4] | XIE Yafei, JIANG Changguo, LUO Xingli, TAN Dayong, XIAO Wansheng. Synthesis of 6H-Type Hexagonal Perovskite Phase of BaGeO3 at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 051201. doi: 10.11858/gywlxb.20210761 |
[5] | ZHANG Yu, HE Duan-Wei, WANG Yong-Kun, LIU Yin-Juan, HU Yi, WANG Jiang-Hua. Reactive Sintering of B6O/TiB2 Composites at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 178-184. doi: 10.11858/gywlxb.2015.03.003 |
[6] | WANG Wen-Jie, DENG Jia-Jun, Ding Kun. Study on Photoluminescence of Mn2+ in Zn0.83Mn0.17Se and ZnSe/Zn0.84Mn0.16Se Superlattics under Pressures[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 385-389 . doi: 10.11858/gywlxb.2011.05.001 |
[7] | LI Sheng-Zhi, LIU Jin-Chao, YANG Xiang-Dong, GUO Yan-Feng, XU Hai-Quan. First-Principles Calculation of ZnS Doped with Mn or Fe[J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 449-454 . doi: 10.11858/gywlxb.2010.06.008 |
[8] | ZHU Jia-Lin, LIU Zhen-Xing, YU Ri-Cheng, LI Feng-Ying, JIN Chang-Qing. Pressure Effect on Electrical Properties of a Manganate with Nominal Composition La1.0Ca2.0Mn2O7[J]. Chinese Journal of High Pressure Physics, 2006, 20(3): 230-236 . doi: 10.11858/gywlxb.2006.03.002 |
[9] | LI Jian-Ru, YANG Liu-Xiang, LI Jie, YU Ri-Cheng, LI Feng-Ying, BAO Zhong-Xing, LIU Jing, JIN Chang-Qing. Structural Stability and Electrical Properties of CMR Material Sr2CrWO6 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 381-384 . doi: 10.11858/gywlxb.2005.04.018 |
[10] | YAO Li-De, YU Ri-Cheng, LI Feng-Ying, LIU Zhen-Xing, LI Ji-Xue, JIN Chang-Qing. Study of the Products of C3N6H6 Treated at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2004, 18(3): 220-224 . doi: 10.11858/gywlxb.2004.03.005 |
[11] | ZHANG Jiang-Shan, E Bei, YU Ri-Cheng, LI Feng-Ying, LI Xiao-Dong, LI Yan-Chun, MA Mai-Ning, LIU Jing, LIU Zhen-Xing, BAO Zhong-Xing, et al.. The Structural Stability and Electrical Properties of Nanometer-Scale Sr2FeMoO6 Polycrystals under High Pressure[J]. Chinese Journal of High Pressure Physics, 2004, 18(3): 193-197 . doi: 10.11858/gywlxb.2004.03.001 |
[12] | ZHAO Xu, YU Ri-Cheng, LI Feng-Ying, LIU Zhen-Xing, BAO Zhong-Xing, TANG Gui-De, LIU Jing, JIN Chang-Qing. Electrical Properties and Structural Stability of Sr2FeMoxNb1-xO6 (x=0, 0.3) under High Pressure[J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 301-304 . doi: 10.11858/gywlxb.2003.04.010 |
[13] | SHEN Han-Xin, SHEN Yao-Wen. Study on Electronic Structure of ZnS: Mn2+[J]. Chinese Journal of High Pressure Physics, 2003, 17(1): 65-68 . doi: 10.11858/gywlxb.2003.01.010 |
[14] | ZHAO Pan, BAO Zhong-Xing, LIU Cui-Xia, LI Feng-Ying, LIU Zhen-Xing, JIN Ming-Zhi, YU Ri-Cheng, JIN Chang-Qing. Electrical Properties and Phase Transition of Sr2FeMoO6 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2002, 16(2): 137-139 . doi: 10.11858/gywlxb.2002.02.009 |
[15] | ZHU Jia-Lin, CHEN Liang-Chen, YU Ri-Cheng, LI Feng-Ying, LIU Jing, JIN Chang-Qing. Pressure-Induced Phase Transitions of Layered Perovskite-Like Manganates Ca3Mn2O7[J]. Chinese Journal of High Pressure Physics, 2001, 15(2): 87-90 . doi: 10.11858/gywlxb.2001.02.002 |
[16] | ZHAO Ting-He, MA Xian-Feng, YAN Xue-Wei, CUI Shuo-Jing. Mechanism of Sintering Clinopyroxene Solid Solution CaMgSi2O6-NaAlSi2O6[J]. Chinese Journal of High Pressure Physics, 1996, 10(1): 69-75 . doi: 10.11858/gywlxb.1996.01.011 |
[17] | ZHANG Shu-Hua. High Temperature Elastic Moduli of TC4, 16Mn and Al2O3 Ceramic[J]. Chinese Journal of High Pressure Physics, 1995, 9(2): 133-138 . doi: 10.11858/gywlxb.1995.02.008 |
[18] | ZHAO Ting-He, YAN Xue-Wei, CUI Shuo-Jing, LIU Li-Jun, ZHAO Wei. The Phase Diagram of Solid Solution 60%NaAlSi2O6-40%CaMgSi2O6 at High Temperatures and High Pressures[J]. Chinese Journal of High Pressure Physics, 1992, 6(2): 92-98 . doi: 10.11858/gywlxb.1992.02.002 |
[19] | CHU Shu-Cheng, XU Da-Peng, SU Wen-Hui, ZHANG Qiang. A Study on the Formation of Quasi-Crystal Al80Mn14Si6 under High Static Pressure[J]. Chinese Journal of High Pressure Physics, 1990, 4(2): 137-142 . doi: 10.11858/gywlxb.1990.02.010 |
[20] | ZHANG Qiang, SU Wen-Hui. A Study on the Formation and the Stability of Al6Mn Quasicrystal under High Static Pressure[J]. Chinese Journal of High Pressure Physics, 1988, 2(1): 58-66 . doi: 10.11858/gywlxb.1988.01.008 |
Component | Material species | Equation of state | Strength model | Invalidation model |
Shell | 35CrMnSi | Linear | Johnson-Cook | Principal stress |
Core | Polyethylene | Shock | von-Mises | - |
Target plate | RHA | Shock | von-Mises | Material strain |
Material | ρ/(g/cm3) | E/(GPa) | σ/(MPa) | G/(GPa) | ν |
35CrMnSi | 7.8 | 210 | 1 270 | 81 | 0.33 |
Polyethylene | 0.94 | 1.5 | 0.26 | 0.55 | 0.45 |
RHA | 7.8 | 171 | 1400 | 64.1 | 0.33 |
Experimental No. | Velocity/(m/s) | Time/(μs) | Radical velocity/(m/s) |
1 | 643 | 8.4 | 127 |
2 | 694 | 7.2 | 142 |
3 | 762 | 6.5 | 153 |
t/(μs) | ˙ep/(104 s−1) | R2/(mm) | u0/(m/s) |
8.4 | 2.62 | 17.7 | 127 |
7.2 | 1.91 | 18.6 | 142 |
6.5 | 1.71 | 19.9 | 153 |
Component | Material species | Equation of state | Strength model | Invalidation model |
Shell | 35CrMnSi | Linear | Johnson-Cook | Principal stress |
Core | Polyethylene | Shock | von-Mises | - |
Target plate | RHA | Shock | von-Mises | Material strain |
Material | ρ/(g/cm3) | E/(GPa) | σ/(MPa) | G/(GPa) | ν |
35CrMnSi | 7.8 | 210 | 1 270 | 81 | 0.33 |
Polyethylene | 0.94 | 1.5 | 0.26 | 0.55 | 0.45 |
RHA | 7.8 | 171 | 1400 | 64.1 | 0.33 |
Experimental No. | Velocity/(m/s) | Time/(μs) | Radical velocity/(m/s) |
1 | 643 | 8.4 | 127 |
2 | 694 | 7.2 | 142 |
3 | 762 | 6.5 | 153 |
t/(μs) | ˙ep/(104 s−1) | R2/(mm) | u0/(m/s) |
8.4 | 2.62 | 17.7 | 127 |
7.2 | 1.91 | 18.6 | 142 |
6.5 | 1.71 | 19.9 | 153 |