Citation: | LUO Rongqin, PENG Ao, ZHANG Jingwen, WANG Jun, CHEN Xianfeng, SHEN Liyuan, SHI Jihao, SUN Xuxu. Evolution Law of Hydrogen Detonation Cellular Structure under the Effect of Rigid and Flexible Porous Materials[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 035202. doi: 10.11858/gywlxb.20230776 |
[1] |
DINCER I, ACAR C. Review and evaluation of hydrogen production methods for better sustainability [J]. International Journal of Hydrogen Energy, 2015, 40(34): 11094–11111. doi: 10.1016/j.ijhydene.2014.12.035
|
[2] |
VERHELST S, WALLNER T. Hydrogen-fueled internal combustion engines [J]. Progress in Energy and Combustion Science, 2009, 35(6): 490–527. doi: 10.1016/j.pecs.2009.08.001
|
[3] |
ZHENG L G, DOU Z G, DU D P, et al. Study on explosion characteristics of premixed hydrogen/biogas/air mixture in a duct [J]. International Journal of Hydrogen Energy, 2019, 44(49): 27159–27173. doi: 10.1016/j.ijhydene.2019.08.156
|
[4] |
MOLNARNE M, SCHROEDER V. Hazardous properties of hydrogen and hydrogen containing fuel gases [J]. Process Safety and Environmental Protection, 2019, 130: 1–5. doi: 10.1016/j.psep.2019.07.012
|
[5] |
WU X L, XU S, PANG A M, et al. Hazard evaluation of ignition sensitivity and explosion severity for three typical MH2 (M= Mg, Ti, Zr) of energetic materials [J]. Defence Technology, 2021, 17(4): 1262–1268. doi: 10.1016/j.dt.2020.06.011
|
[6] |
ALVES J J N, NETO A T P, ARAÚJO A C B, et al. Overview and experimental verification of models to classify hazardous areas [J]. Process Safety and Environmental Protection, 2019, 122: 102–117. doi: 10.1016/j.psep.2018.11.021
|
[7] |
JIAO F Y, ZHANG H R, LI W J, et al. Experimental and numerical study of the influence of initial temperature on explosion limits and explosion process of syngas-air mixtures [J]. International Journal of Hydrogen Energy, 2022, 47(52): 22261–22272. doi: 10.1016/j.ijhydene.2022.05.017
|
[8] |
CHEN Y R, CHANG J, BUSSONNIÈRE A, et al. Evaluation of wettability of mineral particles via cavitation thresholds [J]. Powder Technology, 2020, 362: 334–340. doi: 10.1016/j.powtec.2019.11.069
|
[9] |
ROYLE M, WILLOUGHBY D. The safety of the future hydrogen economy [J]. Process Safety and Environmental Protection, 2011, 89(6): 452–462. doi: 10.1016/j.psep.2011.09.003
|
[10] |
HALIM S Z, YU M X, ESCOBAR H, et al. Towards a causal model from pipeline incident data analysis [J]. Process Safety and Environmental Protection, 2020, 143: 348–360. doi: 10.1016/j.psep.2020.06.047
|
[11] |
AIZAWA K, YOSHINO S, MOGI T, et al. Study of detonation initiation in hydrogen/air flow [J]. Shock Waves, 2008, 18(4): 299–305. doi: 10.1007/s00193-008-0166-6
|
[12] |
EVANS M W, GIVEN F I, RICHESON W E JR. Effects of attenuating materials on detonation induction distances in gases [J]. Journal of Applied Physics, 1955, 26(9): 1111–1113. doi: 10.1063/1.1722162
|
[13] |
TEODORCZYK A, LEE J H S. Detonation attenuation by foams and wire meshes lining the walls [J]. Shock Waves, 1995, 4(4): 225–236. doi: 10.1007/BF01414988
|
[14] |
周凯元, 李宗芬. 丙烷-空气爆燃波的火焰面在直管道中的加速运动 [J]. 爆炸与冲击, 2000, 20(2): 137–142. doi: 10.3321/j.issn:1001-1455.2000.02.008
ZHOU K Y, LI Z F. Flame front acceleration of propane-air deflagration in straight tubes [J]. Explosion and Shock Waves, 2000, 20(2): 137–142. doi: 10.3321/j.issn:1001-1455.2000.02.008
|
[15] |
年伟民, 周凯元, 王汉良, 等. 气体爆轰波在声学吸收壁下游的再加强过程 [J]. 实验力学, 2005, 20(1): 37–43. doi: 10.3969/j.issn.1001-4888.2005.01.006
NIAN W M, ZHOU K Y, WANG H L, et al. The re-intension process of gaseous detonation downstream of the acoustic absorbing walled section [J]. Journal of Experimental Mechanics, 2005, 20(1): 37–43. doi: 10.3969/j.issn.1001-4888.2005.01.006
|
[16] |
夏昌敬, 周凯元. 气相爆轰波在90°矩形弯管中传播时胞格结构的演化 [J]. 爆炸与冲击, 2005, 25(2): 151–156. doi: 10.11883/1001-1455(2005)02-0151-06
XIA C J, ZHOU K Y. Cellular structure evolution of gaseous detonation in a 90° rectangular bend [J]. Explosion and Shock Waves, 2005, 25(2): 151–156. doi: 10.11883/1001-1455(2005)02-0151-06
|
[17] |
王汉良, 周凯元, 杨志, 等. 气体爆轰波在管道中绕射和反射的实验研究 [J]. 火灾科学, 2005, 14(3): 177–181.
WANG H L, ZHOU K Y, YANG Z, et al. Experimental study of diffraction and reflection of gaseous detonation wave in the tube [J]. Fire Safety Science, 2005, 14(3): 177–181.
|
[18] |
杨志, 周凯元, 谢立军, 等. Z型管道中气体火焰传播规律的实验研究 [J]. 火灾科学, 2006, 15(3): 111–115. doi: 10.3969/j.issn.1004-5309.2006.03.001
YANG Z, ZHOU K Y, XIE L J, et al. Experimental study of flame transition in the “Z” type tube [J]. Fire Safety Science, 2006, 15(3): 111–115. doi: 10.3969/j.issn.1004-5309.2006.03.001
|
[19] |
GUO C, THOMAS G, LI J, et al. Experimental study of gaseous detonation propagation over acoustically absorbing walls [J]. Shock Waves, 2002, 11(5): 353–359. doi: 10.1007/s001930100113
|
[20] |
BIVOL G Y, GOLOVASTOV S V, GOLUB V V. Attenuation and recovery of detonation wave after passing through acoustically absorbing section in hydrogen-air mixture at atmospheric pressure [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 311–314. doi: 10.1016/j.jlp.2016.05.032
|
[21] |
ZHANG B. The influence of wall roughness on detonation limits in hydrogen-oxygen mixture [J]. Combustion and Flame, 2016, 169: 333–339. doi: 10.1016/j.combustflame.2016.05.003
|
[22] |
BIVOL G Y, GOLOVASTOV S V, GOLUB V V. Effects of the pore size on hydrogen-air detonation propagation in the channel with porous walls [J]. Journal of Physics: Conference Series, 2019, 1147: 012046. doi: 10.1088/1742-6596/1147/1/012046
|
[23] |
MALIK K, ŻBIKOWSKI M, TEODORCZYK A. Detonation cell size model based on deep neural network for hydrogen, methane and propane mixtures with air and oxygen [J]. Nuclear Engineering and Technology, 2019, 51(2): 424–431. doi: 10.1016/j.net.2018.11.004
|
[24] |
SUN X X, LU S X. Effect of orifice plate on the transmission mechanism of a detonation wave in hydrogen-oxygen mixtures [J]. International Journal of Hydrogen Energy, 2020, 45(22): 12593–12603. doi: 10.1016/j.ijhydene.2020.02.162
|
[25] |
KANESHIGE M, SHEPHERD J E. Detonation database: technical report FM97-8, GALCIT [EB/OL]. (1999-09-03)[2023-03-01]. https://shepherd.caltech.edu/EDL/publications/m_kane97b/db.pdf.
|
[26] |
LIU S Z, CHEN X, ZHAO N B, et al. Experimental study on initiation and propagation behavior of propane/oxygen/nitrogen detonation wave [J]. Fuel, 2021, 293: 120487. doi: 10.1016/j.fuel.2021.120487
|
[27] |
ZHANG B. Detonation limits in methane-hydrogen-oxygen mixtures: dominant effect of induction length [J]. International Journal of Hydrogen Energy, 2019, 44(41): 23532–23537. doi: 10.1016/j.ijhydene.2019.07.053
|
[28] |
PERALDI O, KNYSTAUTAS R, LEE J H. Criteria for transition to detonation in tubes [J]. Symposium (International) on Combustion, 1988, 21(1): 1629–1637. doi: 10.1016/S0082-0784(88)80396-5
|
[29] |
CROSS M, CICCARELLI G. DDT and detonation propagation limits in an obstacle filled tube [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 380–386. doi: 10.1016/j.jlp.2014.11.020
|