Volume 38 Issue 3
Jun 2024
Turn off MathJax
Article Contents
LUO Rongqin, PENG Ao, ZHANG Jingwen, WANG Jun, CHEN Xianfeng, SHEN Liyuan, SHI Jihao, SUN Xuxu. Evolution Law of Hydrogen Detonation Cellular Structure under the Effect of Rigid and Flexible Porous Materials[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 035202. doi: 10.11858/gywlxb.20230776
Citation: LUO Rongqin, PENG Ao, ZHANG Jingwen, WANG Jun, CHEN Xianfeng, SHEN Liyuan, SHI Jihao, SUN Xuxu. Evolution Law of Hydrogen Detonation Cellular Structure under the Effect of Rigid and Flexible Porous Materials[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 035202. doi: 10.11858/gywlxb.20230776

Evolution Law of Hydrogen Detonation Cellular Structure under the Effect of Rigid and Flexible Porous Materials

doi: 10.11858/gywlxb.20230776
  • Received Date: 01 Nov 2023
  • Rev Recd Date: 22 Nov 2023
  • Accepted Date: 17 Jan 2024
  • Issue Publish Date: 03 Jun 2024
  • As highly efficient absorbing and dissipating materials, porous materials were widely used in the study of detonation wave attenuation. In order to further explore the mechanism of explosion suppression by porous materials, the effects of typical flexible (sponge) and rigid (wire mesh) porous materials on the detonation cellular structure for hydrogen and oxygen mixture were investigated systematically. The effects of thickness and porosity of sponge and wire mesh on the structure and size of detonation cell were discussed in detail. The cellular pattern of detonation wave was recorded by using smoke plate technology, and the cell size was calculated. The pressure sensors were used to record the arrival time of the detonation wave, and the average propagation velocity of detonation wave was obtained. The results show that the detonation cellular structure closely depends on the thickness and porosity of sponge and wire mesh, and three phases of the propagation can be observed in the tube, including detonation failure, acceleration and re-initiation. In addition, size of the detonation cell is also closely related to the thickness and porosity of sponge and wire mesh. Increasing the thickness of porous materials and decreasing the porosity both can increase the size of the detonation cell. By comparing the effects of sponge and wire mesh on the detonation cellular structure, it can be found that at the same initial condition, the rigid porous material has a stronger inhibition effect on detonation. But the difference will be gradually decreased with the increase of the thickness of the porous materials. Finally, the limit of the detonation propagation is analyzed quantitatively by introducing the dimensionless parameter DH. For flexible and rigid porous materials, the detonation limit can be nearly quantified as DH≈3.0 and DH≈3.1.

     

  • loading
  • [1]
    DINCER I, ACAR C. Review and evaluation of hydrogen production methods for better sustainability [J]. International Journal of Hydrogen Energy, 2015, 40(34): 11094–11111. doi: 10.1016/j.ijhydene.2014.12.035
    [2]
    VERHELST S, WALLNER T. Hydrogen-fueled internal combustion engines [J]. Progress in Energy and Combustion Science, 2009, 35(6): 490–527. doi: 10.1016/j.pecs.2009.08.001
    [3]
    ZHENG L G, DOU Z G, DU D P, et al. Study on explosion characteristics of premixed hydrogen/biogas/air mixture in a duct [J]. International Journal of Hydrogen Energy, 2019, 44(49): 27159–27173. doi: 10.1016/j.ijhydene.2019.08.156
    [4]
    MOLNARNE M, SCHROEDER V. Hazardous properties of hydrogen and hydrogen containing fuel gases [J]. Process Safety and Environmental Protection, 2019, 130: 1–5. doi: 10.1016/j.psep.2019.07.012
    [5]
    WU X L, XU S, PANG A M, et al. Hazard evaluation of ignition sensitivity and explosion severity for three typical MH2 (M= Mg, Ti, Zr) of energetic materials [J]. Defence Technology, 2021, 17(4): 1262–1268. doi: 10.1016/j.dt.2020.06.011
    [6]
    ALVES J J N, NETO A T P, ARAÚJO A C B, et al. Overview and experimental verification of models to classify hazardous areas [J]. Process Safety and Environmental Protection, 2019, 122: 102–117. doi: 10.1016/j.psep.2018.11.021
    [7]
    JIAO F Y, ZHANG H R, LI W J, et al. Experimental and numerical study of the influence of initial temperature on explosion limits and explosion process of syngas-air mixtures [J]. International Journal of Hydrogen Energy, 2022, 47(52): 22261–22272. doi: 10.1016/j.ijhydene.2022.05.017
    [8]
    CHEN Y R, CHANG J, BUSSONNIÈRE A, et al. Evaluation of wettability of mineral particles via cavitation thresholds [J]. Powder Technology, 2020, 362: 334–340. doi: 10.1016/j.powtec.2019.11.069
    [9]
    ROYLE M, WILLOUGHBY D. The safety of the future hydrogen economy [J]. Process Safety and Environmental Protection, 2011, 89(6): 452–462. doi: 10.1016/j.psep.2011.09.003
    [10]
    HALIM S Z, YU M X, ESCOBAR H, et al. Towards a causal model from pipeline incident data analysis [J]. Process Safety and Environmental Protection, 2020, 143: 348–360. doi: 10.1016/j.psep.2020.06.047
    [11]
    AIZAWA K, YOSHINO S, MOGI T, et al. Study of detonation initiation in hydrogen/air flow [J]. Shock Waves, 2008, 18(4): 299–305. doi: 10.1007/s00193-008-0166-6
    [12]
    EVANS M W, GIVEN F I, RICHESON W E JR. Effects of attenuating materials on detonation induction distances in gases [J]. Journal of Applied Physics, 1955, 26(9): 1111–1113. doi: 10.1063/1.1722162
    [13]
    TEODORCZYK A, LEE J H S. Detonation attenuation by foams and wire meshes lining the walls [J]. Shock Waves, 1995, 4(4): 225–236. doi: 10.1007/BF01414988
    [14]
    周凯元, 李宗芬. 丙烷-空气爆燃波的火焰面在直管道中的加速运动 [J]. 爆炸与冲击, 2000, 20(2): 137–142. doi: 10.3321/j.issn:1001-1455.2000.02.008

    ZHOU K Y, LI Z F. Flame front acceleration of propane-air deflagration in straight tubes [J]. Explosion and Shock Waves, 2000, 20(2): 137–142. doi: 10.3321/j.issn:1001-1455.2000.02.008
    [15]
    年伟民, 周凯元, 王汉良, 等. 气体爆轰波在声学吸收壁下游的再加强过程 [J]. 实验力学, 2005, 20(1): 37–43. doi: 10.3969/j.issn.1001-4888.2005.01.006

    NIAN W M, ZHOU K Y, WANG H L, et al. The re-intension process of gaseous detonation downstream of the acoustic absorbing walled section [J]. Journal of Experimental Mechanics, 2005, 20(1): 37–43. doi: 10.3969/j.issn.1001-4888.2005.01.006
    [16]
    夏昌敬, 周凯元. 气相爆轰波在90°矩形弯管中传播时胞格结构的演化 [J]. 爆炸与冲击, 2005, 25(2): 151–156. doi: 10.11883/1001-1455(2005)02-0151-06

    XIA C J, ZHOU K Y. Cellular structure evolution of gaseous detonation in a 90° rectangular bend [J]. Explosion and Shock Waves, 2005, 25(2): 151–156. doi: 10.11883/1001-1455(2005)02-0151-06
    [17]
    王汉良, 周凯元, 杨志, 等. 气体爆轰波在管道中绕射和反射的实验研究 [J]. 火灾科学, 2005, 14(3): 177–181.

    WANG H L, ZHOU K Y, YANG Z, et al. Experimental study of diffraction and reflection of gaseous detonation wave in the tube [J]. Fire Safety Science, 2005, 14(3): 177–181.
    [18]
    杨志, 周凯元, 谢立军, 等. Z型管道中气体火焰传播规律的实验研究 [J]. 火灾科学, 2006, 15(3): 111–115. doi: 10.3969/j.issn.1004-5309.2006.03.001

    YANG Z, ZHOU K Y, XIE L J, et al. Experimental study of flame transition in the “Z” type tube [J]. Fire Safety Science, 2006, 15(3): 111–115. doi: 10.3969/j.issn.1004-5309.2006.03.001
    [19]
    GUO C, THOMAS G, LI J, et al. Experimental study of gaseous detonation propagation over acoustically absorbing walls [J]. Shock Waves, 2002, 11(5): 353–359. doi: 10.1007/s001930100113
    [20]
    BIVOL G Y, GOLOVASTOV S V, GOLUB V V. Attenuation and recovery of detonation wave after passing through acoustically absorbing section in hydrogen-air mixture at atmospheric pressure [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 311–314. doi: 10.1016/j.jlp.2016.05.032
    [21]
    ZHANG B. The influence of wall roughness on detonation limits in hydrogen-oxygen mixture [J]. Combustion and Flame, 2016, 169: 333–339. doi: 10.1016/j.combustflame.2016.05.003
    [22]
    BIVOL G Y, GOLOVASTOV S V, GOLUB V V. Effects of the pore size on hydrogen-air detonation propagation in the channel with porous walls [J]. Journal of Physics: Conference Series, 2019, 1147: 012046. doi: 10.1088/1742-6596/1147/1/012046
    [23]
    MALIK K, ŻBIKOWSKI M, TEODORCZYK A. Detonation cell size model based on deep neural network for hydrogen, methane and propane mixtures with air and oxygen [J]. Nuclear Engineering and Technology, 2019, 51(2): 424–431. doi: 10.1016/j.net.2018.11.004
    [24]
    SUN X X, LU S X. Effect of orifice plate on the transmission mechanism of a detonation wave in hydrogen-oxygen mixtures [J]. International Journal of Hydrogen Energy, 2020, 45(22): 12593–12603. doi: 10.1016/j.ijhydene.2020.02.162
    [25]
    KANESHIGE M, SHEPHERD J E. Detonation database: technical report FM97-8, GALCIT [EB/OL]. (1999-09-03)[2023-03-01]. https://shepherd.caltech.edu/EDL/publications/m_kane97b/db.pdf.
    [26]
    LIU S Z, CHEN X, ZHAO N B, et al. Experimental study on initiation and propagation behavior of propane/oxygen/nitrogen detonation wave [J]. Fuel, 2021, 293: 120487. doi: 10.1016/j.fuel.2021.120487
    [27]
    ZHANG B. Detonation limits in methane-hydrogen-oxygen mixtures: dominant effect of induction length [J]. International Journal of Hydrogen Energy, 2019, 44(41): 23532–23537. doi: 10.1016/j.ijhydene.2019.07.053
    [28]
    PERALDI O, KNYSTAUTAS R, LEE J H. Criteria for transition to detonation in tubes [J]. Symposium (International) on Combustion, 1988, 21(1): 1629–1637. doi: 10.1016/S0082-0784(88)80396-5
    [29]
    CROSS M, CICCARELLI G. DDT and detonation propagation limits in an obstacle filled tube [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 380–386. doi: 10.1016/j.jlp.2014.11.020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views(139) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return