Citation: | WANG Xiaoxue, DING Yuqing, WANG Hui. First-Principles Study of the Dynamics in Face-Centered Cubic CeH9 and CeH10 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020109. doi: 10.11858/gywlxb.20230771 |
[1] |
FLORES-LIVAS J A, BOERI L, SANNA A, et al. A perspective on conventional high-temperature superconductors at high pressure: methods and materials [J]. Physics Reports, 2020, 856: 1–78. doi: 10.1016/j.physrep.2020.02.003
|
[2] |
PICKARD C J, ERREA I, EREMETS M I. Superconducting hydrides under pressure [J]. Annual Review of Condensed Matter Physics, 2020, 11: 57–76. doi: 10.1146/annurev-conmatphys-031218-013413
|
[3] |
WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466. doi: 10.1073/pnas.1118168109
|
[4] |
LI Z W, HE X, ZHANG C L, et al. Superconductivity above 200 K discovered in superhydrides of calcium [J]. Nature Communications, 2022, 13(1): 2863. doi: 10.1038/s41467-022-30454-w
|
[5] |
KONG P P, MINKOV V S, KUZOVNIKOV M A, et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure [J]. Nature Communications, 2021, 12(1): 5075. doi: 10.1038/s41467-021-25372-2
|
[6] |
LIU H Y, NAUMOV I I, HOFFMANN R, et al. Potential high- Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6990–6995. doi: 10.1073/pnas.1704505114
|
[7] |
LIU H Y, NAUMOV I I, GEBALLE Z M, et al. Dynamics and superconductivity in compressed lanthanum superhydride [J]. Physical Review B, 2018, 98(10): 100102. doi: 10.1103/PhysRevB.98.100102
|
[8] |
GEBALLE Z M, LIU H Y, MISHRA A K, et al. Synthesis and stability of lanthanum superhydrides [J]. Angewandte Chemie, 2018, 130(3): 696–700. doi: 10.1002/ange.201709970
|
[9] |
LILIA B, HENNIG R, HIRSCHFELD P, et al. The 2021 room-temperature superconductivity roadmap [J]. Journal of Physics: Condensed Matter, 2022, 34(18): 183002. doi: 10.1088/1361-648X/ac2864
|
[10] |
GUIGUE B, MARIZY A, LOUBEYRE P. Synthesis of UH7 and UH8 superhydrides: additive-volume alloys of uranium and atomic metal hydrogen down to 35 GPa [J]. Physical Review B, 2020, 102(1): 014107. doi: 10.1103/PhysRevB.102.014107
|
[11] |
KRUGLOV I A, KVASHNIN A G, GONCHAROV A F, et al. High-temperature superconductivity of uranium hydrides at near-ambient conditions [EB/OL]. arXiv: 1708.05251 (2017-08-17)[2023-10-27]. https://arxiv.org/abs/1708.05251v1.
|
[12] |
MA L, LIU G T, WANG Y Y, et al. Experimental syntheses of sodalite-like clathrate EuH6 and EuH9 at extreme pressures [EB/OL]. arXiv: 2002.09900 (2020-02-23)[2023-10-27]. https://arxiv.org/abs/2002.09900v1.
|
[13] |
MA L, ZHOU M, WANG Y Y, et al. Experimental clathrate superhydrides EuH6 and EuH9 at extreme pressure conditions [J]. Physical Review Research, 2021, 3(4): 043107. doi: 10.1103/PhysRevResearch.3.043107
|
[14] |
ZHOU D, SEMENOK D V, DUAN D F, et al. Superconducting praseodymium superhydrides [J]. Science Advances, 2020, 6(9): eaax6849. doi: 10.1126/sciadv.aax6849
|
[15] |
SALKE N P, DAVARI ESFAHANI M M, ZHANG Y J, et al. Synthesis of clathrate cerium superhydride CeH9 at 80–100 GPa with atomic hydrogen sublattice [J]. Nature Communications, 2019, 10(1): 4453. doi: 10.1038/s41467-019-12326-y
|
[16] |
SOMAYAZULU M, AHART M, MISHRA A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures [J]. Physical Review Letters, 2019, 122(2): 027001. doi: 10.1103/PhysRevLett.122.027001
|
[17] |
DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
|
[18] |
LI X, HUANG X L, DUAN D F, et al. Polyhydride CeH9 with an atomic-like hydrogen clathrate structure [J]. Nature Communications, 2019, 10(1): 3461. doi: 10.1038/s41467-019-11330-6
|
[19] |
SEMENOK D V, KVASHNIN A G, IVANOVA A G, et al. Synthesis of ThH4, ThH6, ThH9 and ThH10: a route to room-temperature superconductivity [EB/OL]. arXiv: 1902.10206 (2019-02-26)[2023-10-27]. https://arxiv.org/abs/1902.10206v1.
|
[20] |
SEMENOK D V, KVASHNIN A G, IVANOVA A G, et al. Superconductivity at 161 K in thorium hydride ThH10: synthesis and properties [J]. Materials Today, 2020, 33: 36–44. doi: 10.1016/j.mattod.2019.10.005
|
[21] |
PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001
|
[22] |
WANG H, YE X Q, ZHANG X T, et al. Unveiling hidden physics in the 215-kelvin superconducting calcium hydride: temperature, quantum and defect effects [EB/OL]. arXiv: 2308.12618 (2023-08-24)[2023-10-27]. https://arxiv.org/abs/2308.12618.
|
[23] |
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
|
[24] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
|
[25] |
BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
|
[26] |
HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349–354. doi: 10.1088/0370-1298/65/5/307
|
[27] |
OUADHA I, RACHED H, AZZOUZ-RACHED A, et al. Study of the structural, mechanical and thermodynamic properties of the new MAX phase compounds (Zr1− x Ti x )3AlC2 [J]. Computational Condensed Matter, 2020, 23: e00468. doi: 10.1016/j.cocom.2020.e00468
|
[28] |
TOGO A, TANAKA I. First principles phonon calculations in materials science [J]. Scripta Materialia, 2015, 108: 1–5. doi: 10.1016/j.scriptamat.2015.07.021
|
[29] |
MOMMA K, IZUMI F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data [J]. Journal of Applied Crystallography, 2011, 44(6): 1272–1276. doi: 10.1107/S0021889811038970
|
[30] |
STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
|
[31] |
WU Z J, ZHAO E J, XIANG H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Physical Review B, 2007, 76(5): 054115. doi: 10.1103/PhysRevB.76.054115
|
[32] |
WANG H, SALZBRENNER P T, ERREA I, et al. Quantum structural fluxion in superconducting lanthanum polyhydride [J]. Nature Communications, 2023, 14(1): 1674. doi: 10.1038/s41467-023-37295-1
|
[33] |
CHEN W H, SEMENOK D V, HUANG X L, et al. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar [J]. Physical Review Letters, 2021, 127(11): 117001. doi: 10.1103/PhysRevLett.127.117001
|
[34] |
SKARMOUTSOS I, DELLIS D, MATTHEWS R P, et al. Hydrogen bonding in 1-butyl- and 1-ethyl-3-methylimidazolium chloride ionic liquids [J]. The Journal of Physical Chemistry B, 2012, 116(16): 4921–4933. doi: 10.1021/jp209485y
|
[35] |
STEINCZINGER Z, JÓVÁRI P, PUSZTAI L. Comparison of 9 classical interaction potentials of liquid water: simultaneous reverse Monte Carlo modeling of X-ray and neutron diffraction results and partial radial distribution functions from computer simulations [J]. Journal of Molecular Liquids, 2017, 228: 19–24. doi: 10.1016/j.molliq.2016.09.068
|