Citation: | ZHU Zhikai, LI Zhongyang, KONG Lingping, LIU Gang. Recent Progress on Structural and Functional Evolutions of Metal Halide Perovskites under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050101. doi: 10.11858/gywlxb.20230768 |
[1] |
TRAVIS W, GLOVER E N K, BRONSTEIN H, et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system [J]. Chemical Science, 2016, 7(7): 4548–4556. doi: 10.1039/C5SC04845A
|
[2] |
KIESLICH G, SUN S J, CHEETHAM A K. An extended tolerance factor approach for organic-inorganic perovskites [J]. Chemical Science, 2015, 6(6): 3430–3433. doi: 10.1039/C5SC00961H
|
[3] |
BOYD C C, CHEACHAROEN R, LEIJTENS T, et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics [J]. Chemical Reviews, 2019, 119(5): 3418–3451. doi: 10.1021/acs.chemrev.8b00336
|
[4] |
Best research-cell efficiency chart [EB/OL]. [2023-10-15]. https://www.nrel.gov/pv/cell-efficiency.html.
|
[5] |
CHEN X Y, XIE J J, WANG W, et al. Research progress of compositional controlling strategy to perovskite for high performance solar cells [J]. Acta Chimica Sinica, 2019, 77(1): 9–23. doi: 10.6023/a18100447
|
[6] |
LIU G, KONG L P, YANG W G, et al. Pressure engineering of photovoltaic perovskites [J]. Materials Today, 2019, 27: 91–106. doi: 10.1016/j.mattod.2019.02.016
|
[7] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. Journal of the American Chemical Society, 2009, 131(17): 6050–6051. doi: 10.1021/ja809598r
|
[8] |
CAPITANI F, MARINI C, CARAMAZZA S, et al. High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite [J]. Journal of Applied Physics, 2016, 119(18): 185901. doi: 10.1063/1.4948577
|
[9] |
JAFFE A, LIN Y, BEAVERS C M, et al. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties [J]. ACS Central Science, 2016, 2(4): 201–209. doi: 10.1021/acscentsci.6b00055
|
[10] |
JIANG S J, FANG Y N, LI R P, et al. Pressure-dependent polymorphism and band-gap tuning of methylammonium lead iodide perovskite [J]. Angewandte Chemie International Edition, 2016, 55(22): 6540–6544. doi: 10.1002/anie.201601788
|
[11] |
KONG L P, LIU G, GONG J, et al. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(32): 8910–8915. doi: 10.1073/pnas.1609030113
|
[12] |
WANG L R, WANG K, XIAO G J, et al. Pressure-induced structural evolution and band gap shifts of organometal halide perovskite-based methylammonium lead chloride [J]. The Journal of Physical Chemistry Letters, 2016, 7(24): 5273–5279. doi: 10.1021/acs.jpclett.6b02420
|
[13] |
JAFFE A, LIN Y, MAO W L, et al. Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3 [J]. Journal of the American Chemical Society, 2017, 139(12): 4330–4333. doi: 10.1021/jacs.7b01162
|
[14] |
SZAFRAŃSKI M, KATRUSIAK A. Photovoltaic hybrid perovskites under pressure [J]. The Journal of Physical Chemistry Letters, 2017, 8(11): 2496–2506. doi: 10.1021/acs.jpclett.7b00520
|
[15] |
ZHANG R, CAI W Z, BI T G, et al. Effects of nonhydrostatic stress on structural and optoelectronic properties of methylammonium lead bromide perovskite [J]. The Journal of Physical Chemistry Letters, 2017, 8(15): 3457–3465. doi: 10.1021/acs.jpclett.7b01367
|
[16] |
JIANG H Y, XUE H T, WANG L F, et al. Effect of pressure-induced structural phase transition on electronic and optical properties of perovskite CH3NH3PbI3 [J]. Materials Science in Semiconductor Processing, 2019, 96: 59–65. doi: 10.1016/j.mssp.2019.01.038
|
[17] |
LEE J H, JAFFE A, LIN Y, et al. Origins of the pressure-induced phase transition and metallization in the halide perovskite (CH3NH3)PbI3 [J]. ACS Energy Letters, 2020, 5(7): 2174–2181. doi: 10.1021/acsenergylett.0c00772
|
[18] |
KONG L P, GONG J, HU Q Y, et al. Suppressed lattice disorder for large emission enhancement and structural robustness in hybrid lead iodide perovskite discovered by high-pressure isotope effect [J]. Advanced Functional Materials, 2021, 31(9): 2009131. doi: 10.1002/adfm.202009131
|
[19] |
YIN Y F, TIAN W M, LUO H, et al. Excellent carrier transport property of hybrid perovskites sustained under high pressures [J]. ACS Energy Letters, 2022, 7(1): 154–161. doi: 10.1021/acsenergylett.1c02359
|
[20] |
JUNG Y K, ABDULLA M, FRIEND R H, et al. Pressure-induced non-radiative losses in halide perovskite light-emitting diodes [J]. Journal of Materials Chemistry C, 2022, 10(35): 12560–12568. doi: 10.1039/D2TC01490D
|
[21] |
OU T J, YAN J J, XIAO C H, et al. Visible light response, electrical transport, and amorphization in compressed organolead iodine perovskites [J]. Nanoscale, 2016, 8(22): 11426–11431. doi: 10.1039/C5NR07842C
|
[22] |
YUAN Y, LIU X F, MA X D, et al. Large band gap narrowing and prolonged carrier lifetime of (C4H9NH3)2PbI4 under High Pressure [J]. Advanced Science, 2019, 6(15): 1900240. doi: 10.1002/advs.201900240
|
[23] |
WANG Y G, LYU X J, YANG W G, et al. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite [J]. Journal of the American Chemical Society, 2015, 137(34): 11144–11149. doi: 10.1021/jacs.5b06346
|
[24] |
WANG L R, OU T J, WANG K, et al. Pressure-induced structural evolution, optical and electronic transitions of nontoxic organometal halide perovskite-based methylammonium tin chloride [J]. Applied Physics Letters, 2017, 111(23): 233901. doi: 10.1063/1.5004186
|
[25] |
LÜ X J, WANG Y G, STOUMPOS C C, et al. Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization [J]. Advanced Materials, 2016, 28(39): 8663–8668. doi: 10.1002/adma.201600771
|
[26] |
LIU G, KONG L P, GONG J, et al. Pressure-induced bandgap optimization in lead-based perovskites with prolonged carrier lifetime and ambient retainability [J]. Advanced Functional Materials, 2017, 27(3): 1604208. doi: 10.1002/adfm.201604208
|
[27] |
ZHU H, CAI T, QUE M D, et al. Pressure-induced phase transformation and band-gap engineering of formamidinium lead iodide perovskite nanocrystals [J]. The Journal of Physical Chemistry Letters, 2018, 9(15): 4199–4205. doi: 10.1021/acs.jpclett.8b01852
|
[28] |
WANG P, GUAN J W, GALESCHUK D T K, et al. Pressure-induced polymorphic, optical, and electronic transitions of formamidinium lead iodide perovskite [J]. The Journal of Physical Chemistry Letters, 2017, 8(10): 2119–2125. doi: 10.1021/acs.jpclett.7b00665
|
[29] |
XIAO G J, CAO Y, QI G Y, et al. Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals [J]. Journal of the American Chemical Society, 2017, 139(29): 10087–10094. doi: 10.1021/jacs.7b05260
|
[30] |
YUAN G, QIN S, WU X, et al. Pressure-induced phase transformation of CsPbI3 by X-ray diffraction and Raman spectroscopy [J]. Phase Transitions, 2018, 91(1): 38–47. doi: 10.1080/01411594.2017.1357180
|
[31] |
CAO Y, QI G Y, LIU C, et al. Pressure-tailored band gap engineering and structure evolution of cubic cesium lead iodide perovskite nanocrystals [J]. The Journal of Physical Chemistry C, 2018, 122(17): 9332–9338. doi: 10.1021/acs.jpcc.8b01673
|
[32] |
LIANG Y F, HUANG X L, HUANG Y P, et al. New metallic ordered phase of perovskite CsPbI3 under pressure [J]. Advanced Science, 2019, 6(14): 1900399. doi: 10.1002/advs.201900399
|
[33] |
YESUDHAS S, MORRELL M V, ANDERSON M J, et al. Pressure-induced phase changes in cesium lead bromide perovskite nanocrystals with and without Ruddlesden-Popper faults [J]. Chemistry of Materials, 2020, 32(2): 785–794. doi: 10.1021/acs.chemmater.9b04157
|
[34] |
YUAN G, HUANG S X, NIU J J, et al. Compressibility of Cs2SnBr6 by X-ray diffraction and Raman spectroscopy [J]. Solid State Communications, 2018, 275: 68–72. doi: 10.1016/j.ssc.2018.03.014
|
[35] |
FU R J, CHEN Y P, YONG X, et al. Pressure-induced structural transition and band gap evolution of double perovskite Cs2AgBiBr6 nanocrystals [J]. Nanoscale, 2019, 11(36): 17004–17009. doi: 10.1039/C9NR07030C
|
[36] |
GIRDZIS S P, LIN Y, LEPPERT L, et al. Revealing local disorder in a silver-bismuth halide perovskite upon compression [J]. The Journal of Physical Chemistry Letters, 2021, 12(1): 532–536. doi: 10.1021/acs.jpclett.0c03412
|
[37] |
GENG T, WEI S, ZHAO W Y, et al. Insight into the structure-property relationship of two-dimensional lead-free halide perovskite Cs3Bi2Br9 nanocrystals under pressure [J]. Inorganic Chemistry Frontiers, 2021, 8(6): 1410–1415. doi: 10.1039/D0QI01300E
|
[38] |
FANG Y Y, ZHANG L, WU L W, et al. Pressure-induced emission (PIE) and phase transition of a two-dimensional halide double perovskite (BA)4AgBiBr8 (BA = CH3(CH2)3NH3+) [J]. Angewandte Chemie International Edition, 2019, 58(43): 15249–15253. doi: 10.1063/5.0058821
|
[39] |
CHEN M T, GUO S H, BU K J, et al. Pressure-induced robust emission in a zero-dimensional hybrid metal halide (C9NH20)6Pb3Br12 [J]. Matter and Radiation at Extremes, 2021, 6(5): 08401. doi: 10.1002/anie.201906311
|
[40] |
MA Z W, LI F F, QI G Y, et al. Structural stability and optical properties of two-dimensional perovskite-like CsPb2Br5 microplates in response to pressure [J]. Nanoscale, 2019, 11(3): 820–825. doi: 10.1039/C8NR05684F
|
[41] |
ZHANG L, WU L W, WANG K, et al. Pressure-induced broadband emission of 2D organic-inorganic hybrid perovskite (C6H5C2H4NH3)2PbBr4 [J]. Advanced Science, 2019, 6(2): 1801628. doi: 10.1002/advs.201801628
|
[42] |
ZHAN X H, JIANG X M, LV P, et al. Enhanced structural stability and pressure-induced photoconductivity in two-dimensional hybrid perovskite (C6H5CH2NH3)2 CuBr4 [J]. Angewandte Chemie International Edition, 2022, 61(28): e202205491. doi: 10.1002/anie.202205491
|
[43] |
FANG Y Y, WANG J T, ZHANG L, et al. Tailoring the high-brightness “warm” white light emission of two-dimensional perovskite crystals via a pressure-inhibited nonradiative transition [J]. Chemical Science, 2023, 14(10): 2652–2658. doi: 10.1039/D2SC06982B
|
[44] |
GUO S H, BU K J, LI J W, et al. Enhanced photocurrent of all-inorganic two-dimensional perovskite Cs2PbI2Cl2 via pressure-regulated excitonic features [J]. Journal of the American Chemical Society, 2021, 143(6): 2545–2551. doi: 10.1021/jacs.0c11730
|
[45] |
AZEEM M, QIN Y, LI Z G, et al. Cooperative B-site octahedral tilting, distortion and A-site conformational change induced phase transitions of a 2D lead halide perovskite [J]. Materials Chemistry Frontiers, 2021, 5(20): 7587–7594. doi: 10.1039/D1QM00566A
|
[46] |
CHEN Y P, FU R J, WANG L R, et al. Emission enhancement and bandgap retention of a two-dimensional mixed cation lead halide perovskite under high pressure [J]. Journal of Materials Chemistry A, 2019, 7(11): 6357–6362. doi: 10.1039/C8TA11992A
|
[47] |
CODURI M, STROBEL T A, SZAFRANSKI M, et al. Band gap engineering in MASnBr3 and CsSnBr3 perovskites: mechanistic insights through the application of pressure [J]. The Journal of Physical Chemistry Letters, 2019, 10(23): 7398–7405. doi: 10.1021/acs.jpclett.9b03046
|
[48] |
COHEN B E, WIERZBOWSKA M, ETGAR L. High efficiency and high open circuit voltage in quasi 2D perovskite based solar cells [J]. Advanced Functional Materials, 2017, 27(5): 1604733. doi: 10.1002/adfm.201604733
|
[49] |
FU R J, CHEN Y P, WANG L R, et al. Stability and band gap engineering of silica-confined lead halide perovskite nanocrystals under high pressure [J]. Geoscience Frontiers, 2021, 12(2): 957–963. doi: 10.1016/j.gsf.2020.07.004
|
[50] |
FU R J, ZHAO W Y, WANG L R, et al. Pressure-induced emission toward harvesting cold white light from warm white light [J]. Angewandte Chemie International Edition, 2021, 60(18): 10082–10088. doi: 10.1002/anie.202015395
|
[51] |
GAO F F, LI X, QIN Y, et al. Dual-stimuli-responsive photoluminescence of enantiomeric two-dimensional lead halide perovskites [J]. Advanced Optical Materials, 2021, 9(23): 2100003. doi: 10.1002/adom.202100003
|
[52] |
GAO F F, SONG H P, LI Z G, et al. Pressure-tuned multicolor emission of 2D lead halide perovskites with ultrahigh color purity [J]. Angewandte Chemie International Edition, 2023, 62(12): e202218675. doi: 10.1002/anie.202218675
|
[53] |
GAO X J, WANG Q, ZHANG Y, et al. Pressure effects on optoelectronic properties of CsPbBr3 nanocrystals [J]. The Journal of Physical Chemistry C, 2020, 124(20): 11239–11247. doi: 10.1021/acs.jpcc.0c02701
|
[54] |
GENG T, MA Z W, CHEN Y P, et al. Bandgap engineering in two-dimensional halide perovskite Cs3Sb2I9 nanocrystals under pressure [J]. Nanoscale, 2020, 12(3): 1425–1431. doi: 10.1039/C9NR09533K
|
[55] |
GENG T, SHI Y, LIU Z, et al. Pressure-induced emission from all-inorganic two-dimensional vacancy-ordered lead-free metal halide perovskite nanocrystals [J]. The Journal of Physical Chemistry Letters, 2022, 13(50): 11837–11843. doi: 10.1021/acs.jpclett.2c03332
|
[56] |
GHOSH D, AZIZ A, DAWSON J A, et al. Putting the squeeze on lead iodide perovskites: pressure-induced effects to tune their structural and optoelectronic behavior [J]. Chemistry of Materials, 2019, 31(11): 4063–4071. doi: 10.1021/acs.chemmater.9b00648
|
[57] |
GHOSH P S, PONOMAREVA I. Negative linear compressibility in organic-inorganic hybrid perovskite [NH2NH3]X(HCOO)3 (X = Mn, Fe, Co) [J]. The Journal of Physical Chemistry Letters, 2022, 13(13): 3143–3149. doi: 10.1021/acs.jpclett.2c00288
|
[58] |
HUANG J S, YUAN Y B, SHAO Y C, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications [J]. Nature Reviews Materials, 2017, 2(7): 17042. doi: 10.1038/natrevmats.2017.42
|
[59] |
KE F, WANG C X, JIA C J, et al. Preserving a robust CsPbI3 perovskite phase via pressure-directed octahedral tilt [J]. Nature Communications, 2021, 12(1): 461. doi: 10.1038/s41467-020-20745-5
|
[60] |
KHOLIL M I, BHUIYAN M T H. Effects of pressure on narrowing the band gap, visible light absorption, and semi-metallic transition of lead-free perovskite CsSnBr3 for optoelectronic applications [J]. Journal of Physics and Chemistry of Solids, 2021, 154: 110083. doi: 10.1016/j.jpcs.2021.110083
|
[61] |
LI H, QIN Y, SHAN B H, et al. Unusual pressure-driven phase transformation and band renormalization in 2D vdW hybrid lead halide perovskites [J]. Advanced Materials, 2020, 32(12): 1907364. doi: 10.1002/adma.201907364
|
[62] |
LI H, WINES D, CHEN B, et al. Abnormal phase transition and band renormalization of guanidinium-based organic-inorganic hybrid perovskite [J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44964–44971. doi: 10.1021/acsami.1c14521
|
[63] |
LI Q, LI S R, WANG K, et al. High-pressure study of perovskite-like organometal halide: band-gap narrowing and structural evolution of [NH3-(CH2)4-NH3]CuCl4 [J]. The Journal of Physical Chemistry Letters, 2017, 8(2): 500–506. doi: 10.1021/acs.jpclett.6b02786
|
[64] |
LI Q, YIN L X, CHEN Z W, et al. High pressure structural and optical properties of two-dimensional hybrid halide perovskite (CH3NH3)3Bi2Br9 [J]. Inorganic Chemistry, 2019, 58(2): 1621–1626. doi: 10.1021/acs.inorgchem.8b03190
|
[65] |
LI Z L, JIA B X, FANG S X, et al. Pressure-tuning photothermal synergy to optimize the photoelectronic properties in amorphous halide perovskite Cs3Bi2I9 [J]. Advanced Science, 2023, 10(6): 2205837. doi: 10.1002/advs.202205837
|
[66] |
LIANG Y F, WU M, TIAN C, et al. Pressure-tuned quantum well configuration in two-dimensional PA8Pb5I18 perovskites for highly efficient yellow fluorescence [J]. ACS Applied Energy Materials, 2021, 4(9): 10003–10011. doi: 10.1021/acsaem.1c01925
|
[67] |
LIANG Y F, ZANG Y F, HUANG X L, et al. Broadband emission enhancement induced by self-trapped excited states in one-dimensional EAPbI3 perovskite under pressure [J]. The Journal of Physical Chemistry C, 2020, 124(16): 8984–8991. doi: 10.1021/acs.jpcc.0c01553
|
[68] |
LIU G, GONG J, KONG L P, et al. Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(32): 8076–8081. doi: 10.1073/pnas.1809167115
|
[69] |
LIU G, KONG L P, GUO P J, et al. Two regimes of bandgap red shift and partial ambient retention in pressure-treated two-dimensional perovskites [J]. ACS Energy Letters, 2017, 2(11): 2518–2524. doi: 10.1021/acsenergylett.7b00807
|
[70] |
LLOYD A J, HESTER B R, BAXTER S J, et al. Hybrid double perovskite containing helium: [He2][CaZr]F6 [J]. Chemistry of Materials, 2021, 33(9): 3132–3138. doi: 10.1021/acs.chemmater.0c04782
|
[71] |
LÜ X J, YANG W G, JIA Q X, et al. Pressure-induced dramatic changes in organic-inorganic halide perovskites [J]. Chemical Science, 2017, 8(10): 6764–6776. doi: 10.1039/C7SC01845B
|
[72] |
MA Y L, ZHANG L, TANG Y, et al. Pressure-induced piezochromism and structure transitions in lead-free layered Cs4MnBi2Cl12 quadruple perovskite [J]. ACS Applied Energy Materials, 2021, 4(8): 7513–7518. doi: 10.1021/acsaem.1c01583
|
[73] |
MA Z W, LI Q, LUO J J, et al. Pressure-driven reverse intersystem crossing: new path toward bright deep-blue emission of lead-free halide double perovskites [J]. Journal of the American Chemical Society, 2021, 143(37): 15176–15184. doi: 10.1021/jacs.1c06207
|
[74] |
MĄCZKA M, SOBCZAK S, RATAJCZYK P, et al. Pressure-driven phase transition in two-dimensional perovskite MHy2PbBr4 [J]. Chemistry of Materials, 2022, 34(17): 7867–7877. doi: 10.1021/acs.chemmater.2c01533
|
[75] |
NICHOLAS A D, ZHAO J, SLEBODNICK C, et al. High-pressure structural and optical property evolution of a hybrid indium halide perovskite [J]. Journal of Solid State Chemistry, 2021, 300: 122262. doi: 10.1016/j.jssc.2021.122262
|
[76] |
RATTÉ J, MACINTOSH M F, DILORETO L, et al. Spacer-dependent and pressure-tuned structures and optoelectronic properties of 2D hybrid halide perovskites [J]. The Journal of Physical Chemistry Letters, 2023, 14(2): 403–412. doi: 10.1021/acs.jpclett.2c03555
|
[77] |
SAEED M, ALI M A, MURAD S, et al. Pressure induced structural, electronic, optical and thermal properties of CsYbBr3, a theoretical investigation [J]. Journal of Materials Research and Technology, 2021, 10: 687–696. doi: 10.1016/j.jmrt.2020.12.052
|
[78] |
SAMANTA D, SAHA P, GHOSH B, et al. Pressure-induced emergence of visible luminescence in lead free halide perovskite Cs3Bi2Br9: effect of structural distortion [J]. The Journal of Physical Chemistry C, 2021, 125(6): 3432–3440. doi: 10.1021/acs.jpcc.0c10624
|
[79] |
SHEN P F, VOGT T, LEE Y. Pressure-induced enhancement of broad-band white light emission in butylammonium lead bromide [J]. The Journal of Physical Chemistry Letters, 2020, 11(10): 4131–4137. doi: 10.1021/acs.jpclett.0c01160
|
[80] |
SHERWOOD B, RIDLEY C J, BULL C L, et al. A pressure induced reversal to the 9R perovskite in Ba3MoNbO8.5 [J]. Journal of Materials Chemistry A, 2021, 9(10): 6567–6574. doi: 10.1039/D0TA11270D
|
[81] |
SHI Y, JIN Z Q, LV P F, et al. Bandgap narrowing and piezochromism of doped two-dimensional hybrid perovskite nanocrystals under pressure [J]. Journal of Materials Chemistry C, 2023, 11(5): 1726–1732. doi: 10.1039/D2TC05158C
|
[82] |
SHI Y, ZHAO W Y, MA Z W, et al. Self-trapped exciton emission and piezochromism in conventional 3D lead bromide perovskite nanocrystals under high pressure [J]. Chemical Science, 2021, 12(44): 14711–14717. doi: 10.1039/D1SC04987A
|
[83] |
SONG C P, YANG H R, LIU F, et al. Ultrafast femtosecond pressure modulation of structure and exciton kinetics in 2D halide perovskites for enhanced light response and stability [J]. Nature Communications, 2021, 12(1): 4879. doi: 10.1038/s41467-021-25140-2
|
[84] |
SUN M E, GENG T, YONG X, et al. Pressure-triggered blue emission of zero-dimensional organic bismuth bromide perovskite [J]. Advanced Science, 2021, 8(9): 2004853. doi: 10.1002/advs.202004853
|
[85] |
SUN M E, WANG Y G, WANG F, et al. Chirality-dependent structural transformation in chiral 2D perovskites under high pressure [J]. Journal of the American Chemical Society, 2023, 145(16): 8908–8916. doi: 10.1021/jacs.2c12527
|
[86] |
SUN S J, DENG Z Y, WU Y, et al. Variable temperature and high-pressure crystal chemistry of perovskite formamidinium lead iodide: a single crystal X-ray diffraction and computational study [J]. Chemical Communications, 2017, 53(54): 7537–7540. doi: 10.1039/C7CC00995J
|
[87] |
SZAFRAŃSKI M, KATRUSIAK A, STÅHL K. Time-dependent transformation routes of perovskites CsPbBr3 and CsPbCl3 under high pressure [J]. Journal of Materials Chemistry A, 2021, 9(17): 10769–10779. doi: 10.1039/D1TA01875B
|
[88] |
TIAN C, LIANG Y F, CHEN W H, et al. Hydrogen-bond enhancement triggered structural evolution and band gap engineering of hybrid perovskite (C6H5CH2NH3)2PbI4 under high pressure [J]. Physical Chemistry Chemical Physics, 2020, 22(4): 1841–1846. doi: 10.1039/C9CP05904K
|
[89] |
WANG J X, WANG L R, WANG F, et al. Pressure-induced bandgap engineering of lead-free halide double perovskite (NH4)2SnBr6 [J]. Physical Chemistry Chemical Physics, 2021, 23(35): 19308–19312. doi: 10.1039/D1CP03267D
|
[90] |
WANG L R, WANG K, ZOU B. Pressure-induced structural and optical properties of organometal halide perovskite-based formamidinium lead bromide [J]. The Journal of Physical Chemistry Letters, 2016, 7(13): 2556–2562. doi: 10.1021/acs.jpclett.6b00999
|
[91] |
WANG Y Q, GUO S H, LUO H, et al. Reaching 90% photoluminescence quantum yield in one-dimensional metal halide C4N2H14PbBr4 by pressure-suppressed nonradiative loss [J]. Journal of the American Chemical Society, 2020, 142(37): 16001–16006. doi: 10.1021/jacs.0c07166
|
[92] |
WANG Y J, ZHANG L K, MA S L, et al. Octahedral tilting dominated phase transition in compressed double perovskite Ba2SmBiO6 [J]. Applied Physics Letters, 2021, 118(23): 231903. doi: 10.1063/5.0054742
|
[93] |
WU L W, DONG Z Y, ZHANG L, et al. High-pressure band-gap engineering and metallization in the perovskite derivative Cs3Sb2I9 [J]. ChemSusChem, 2019, 12(17): 3971–3976. doi: 10.1002/cssc.201901388
|
[94] |
XIANG G B, WU Y W, ZHANG M, et al. Dimension-dependent bandgap narrowing and metallization in lead-free halide perovskite Cs3Bi2X9 (X = I, Br, and Cl) under high pressure [J]. Nanomaterials, 2021, 11(10): 2712. doi: 10.3390/nano11102712
|
[95] |
YANG H J, SHI W W, NAGAOKA Y, et al. Access and capture of layered double perovskite polytypic phase through high-pressure engineering [J]. The Journal of Physical Chemistry C, 2023, 127(5): 2407–2415. doi: 10.1021/acs.jpcc.2c07970
|
[96] |
ZHANG L, FANG Y Y, SUI L Z, et al. Tuning emission and electron-phonon coupling in lead-free halide double perovskite Cs2AgBiCl6 under pressure [J]. ACS Energy Letters, 2019, 4(12): 2975–2982. doi: 10.1021/acsenergylett.9b02155
|
[97] |
ZHANG L, LIU C M, WANG L R, et al. Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9 [J]. Angewan Chemie International Edition, 2018, 57(35): 11213–11217. doi: 10.1002/anie.201804310
|
[98] |
ZHANG L, ZENG Q X, WANG K. Pressure-induced structural and optical properties of inorganic halide perovskite CsPbBr3 [J]. The Journal of Physical Chemistry Letters, 2017, 8(16): 3752–3758. doi: 10.1021/acs.jpclett.7b01577
|
[99] |
LI Q, WANG Y G, PAN W C, et al. High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite [J]. Angewandte Chemie International Edition, 2017, 56(50): 15969–15973. doi: 10.1002/anie.201708684
|
[100] |
SHARMA S M, SIKKA S K. Pressure induced amorphization of materials [J]. Progress in Materials Science, 1996, 40(1): 1–77. doi: 10.1016/0079-6425(95)00006-2
|
[101] |
SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells [J]. Journal of Applied Physics, 1961, 32(3): 510–519. doi: 10.1063/1.1736034
|
[102] |
LI M, LIU T B, WANG Y G, et al. Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies [J]. Matter and Radiation at Extremes, 2020, 5(1): 018201. doi: 10.1063/1.5133653
|
[103] |
ZHAO W J, RIBEIRO R M, EDA G. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets [J]. Accounts of Chemical Research, 2015, 48(1): 91–99. doi: 10.1021/ar500303m
|
[104] |
TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium [J]. Physica Status Solidi (b), 1966, 15(2): 627–637. doi: 10.1002/pssb.19660150224
|
[105] |
GAO C F, LI R P, LI Y R, et al. Direct-indirect transition of pressurized two-dimensional halide perovskite: role of benzene ring stack ordering [J]. The Journal of Physical Chemistry Letters, 2019, 10(19): 5687–5693. doi: 10.1021/acs.jpclett.9b02604
|
[106] |
GONG J B, ZHONG H X, GAO C, et al. Pressure-induced indirect-direct bandgap transition of CsPbBr3 single crystal and its effect on photoluminescence quantum yield [J]. Advanced Science, 2022, 9(29): 2201554. doi: 10.1002/advs.202201554
|
[107] |
WANG J X, WANG L R, LI Y Q, et al. Pressure-induced metallization of lead-free halide double perovskite (NH4)2PtI6 [J]. Advanced Science, 2022, 9(28): 2203442. doi: 10.1002/advs.202203442
|
[108] |
MATSUISHI K, ISHIHARA T, ONARI S, et al. Optical properties and structural phase transitions of lead-halide based inorganic-organic 3D and 2D perovskite semiconductors under high pressure [J]. Physica Status Solidi (B), 2004, 241(14): 3328–3333. doi: 10.1002/pssb.200405229
|
[109] |
YIN T T, FANG Y N, CHONG W K, et al. High-pressure-induced comminution and recrystallization of CH3NH3PbBr3 nanocrystals as large thin nanoplates [J]. Advanced Materials, 2018, 30(2): 1705017. doi: 10.1002/adma.201705017
|
[110] |
YIN T T, LIU B, YAN J X, et al. Pressure-engineered structural and optical properties of two-dimensional (C4H9NH3)2PbI4 perovskite exfoliated nm-thin flakes [J]. Journal of the American Chemical Society, 2019, 141(3): 1235–1241. doi: 10.1021/jacs.8b07765
|
[111] |
LIU S, SUN S S, GAN C K, et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation [J]. Science Advances, 2019, 5(7): eaav9445. doi: 10.1126/sciadv.aav9445
|
[112] |
GUO S H, ZHAO Y S, BU K J, et al. Pressure-suppressed carrier trapping leads to enhanced emission in two-dimensional perovskite (HA)2(GA)Pb2I7 [J]. Angewandte Chemie International Edition, 2020, 59(40): 17533–17539. doi: 10.1002/anie.202001635
|
[113] |
MA Z W, LI F F, SUI L Z, et al. Tunable color temperatures and emission enhancement in 1D halide perovskites under high pressure [J]. Advanced Optical Materials, 2020, 8(18): 2000713. doi: 10.1002/adom.202000713
|
[114] |
SHI Y, MA Z W, ZHAO D L, et al. Pressure-induced emission (PIE) of one-dimensional organic tin bromide perovskites [J]. Journal of the American Chemical Society, 2019, 141(16): 6504–6508. doi: 10.1021/jacs.9b02568
|
[115] |
REN X T, YAN X Z, AHMAD A S, et al. Pressure-induced phase transition and band gap engineering in propylammonium lead bromide perovskite [J]. The Journal of Physical Chemistry C, 2019, 123(24): 15204–15208. doi: 10.1021/acs.jpcc.9b02854
|
[116] |
LI Q, CHEN Z W, YANG B, et al. Pressure-induced remarkable enhancement of self-trapped exciton emission in one-dimensional CsCu2I3 with tetrahedral units [J]. Journal of the American Chemical Society, 2020, 142(4): 1786–1791. doi: 10.1021/jacs.9b13419
|
[117] |
LI Q, CHEN Z W, LI M Z, et al. Pressure-engineered photoluminescence tuning in zero-dimensional lead bromide trimer clusters [J]. Angewandte Chemie International Edition, 2021, 60(5): 2583–2587. doi: 10.1002/anie.202009237
|
[118] |
ZHANG L, LIU C M, LIN Y, et al. Tuning optical and electronic properties in low-toxicity organic-inorganic hybrid (CH3NH3)3Bi2I9 under high pressure [J]. The Journal of Physical Chemistry Letters, 2019, 10(8): 1676–1683. doi: 10.1021/acs.jpclett.9b00595
|
[119] |
MA Z W, LIU Z, LU S Y, et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals [J]. Nature Communications, 2018, 9(1): 4506. doi: 10.1038/s41467-018-06840-8
|
[120] |
WANG T Y, DAIBER B, FROST J M, et al. Indirect to direct bandgap transition in methylammonium lead halide perovskite [J]. Energy & Environmental Science, 2017, 10(2): 509–515. doi: 10.1039/c6ee03474h
|
[121] |
HAN Q F, BAE S H, SUN P Y, et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties [J]. Advanced Materials, 2016, 28(11): 2253–2258. doi: 10.1002/adma.201505002
|
[122] |
MIZUSAKI J, ARAI K, FUEKI K. Ionic conduction of the perovskite-type halides [J]. Solid State Ionics, 1983, 11(3): 203–211. doi: 10.1016/0167-2738(83)90025-5
|
[123] |
YAMADA K, ISOBE K, TSUYAMA E, et al. Chloride ion conductor CH3NH3GeCl3 studied by Rietveld analysis of X-ray diffraction and 35Cl NMR [J]. Solid State Ionics, 1995, 79: 152–157. doi: 10.1016/0167-2738(95)00055-B
|
[124] |
YAMADA K, KURANAGA Y, UEDA K, et al. Phase transition and electric conductivity of ASnCl3 (A= Cs and CH3NH3) [J]. Bulletin of the Chemical Society of Japan, 1998, 71(1): 127–134. doi: 10.1246/bcsj.71.127
|
[125] |
AZPIROZ J M, MOSCONI E, BISQUERT J, et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation [J]. Energy & Environmental Science, 2015, 8(7): 2118–2127. doi: 10.1039/c5ee01265a
|
[126] |
YAN H C, OU T J, JIAO H, et al. Pressure dependence of mixed conduction and photo responsiveness in organolead tribromide perovskites [J]. The Journal of Physical Chemistry Letters, 2017, 8(13): 2944–2950. doi: 10.1021/acs.jpclett.7b01022
|
[127] |
LIN J, CHEN H, GAO Y, et al. Pressure-induced semiconductor-to-metal phase transition of a charge-ordered indium halide perovskite [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(47): 23404–23409. doi: 10.1073/pnas.1907576116
|
[128] |
YAO X D, BAI Y X, JIN C, et al. Anomalous polarization enhancement in a van der Waals ferroelectric material under pressure [J]. Nature Communications, 2023, 14(1): 4301. doi: 10.1038/s41467-023-40075-6
|