Citation: | DONG Zelin, QU Kepeng, HU Xueyao, XIAO Wei, WANG Yixin. Cook-Off Characteristics of HMX-Based Pressed Charges with Different Sizes[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 025102. doi: 10.11858/gywlxb.20230757 |
[1] |
王晓峰. 关于不敏感弹药的几点认识 [J]. 火炸药学报, 2022, 45(3): 285–289.
WANG X F. Some opinions about insensitive munitions [J]. Chinese Journal of Explosives & Propellants, 2022, 45(3): 285–289.
|
[2] |
LI Y B, PAN L P, YANG Z J, et al. The effect of wax coating, aluminum and ammonium perchlorate on impact sensitivity of HMX [J]. Defence Technology, 2017, 13(6): 422–427. doi: 10.1016/j.dt.2017.05.022
|
[3] |
MIL-STD-2105D. Hazard assessment tests for non-unclear munitions [S]. 2011.
|
[4] |
HOBBS M L, KANESHIGE M J. Small-scale cook-off experiments and models of ammonium nitrate [J]. Journal of Energetic Materials, 2019, 37(1): 29–43. doi: 10.1080/07370652.2018.1521480
|
[5] |
吴世永, 王伟力, 苗润, 等. 不同尺寸装药烤燃特性的数值模拟研究 [J]. 中国测试, 2016, 42(10): 85–89.
WU S Y, WANG W L, MIAO R, et al. Numerical simulation of cook-off behavior of charge with different size [J]. China Measurement & Test, 2016, 42(10): 85–89.
|
[6] |
冯晓军, 王晓峰, 韩助龙. 炸药装药尺寸对慢速烤燃响应的研究 [J]. 爆炸与冲击, 2005, 25(3): 285–288.
FENG X J, WANG X F, HAN Z L. The study of charging size influence on the response of explosives in slow cook-off test [J]. Explosion and Shock Waves, 2005, 25(3): 285–288.
|
[7] |
WARDELL J F, MAIENSCHEIN J L. The scaled thermal explosion experiment [C]//Proceedings of 12th International Detonation Symposium. San Diego, CA: Office of Naval Research, 2002.
|
[8] |
牛余雷, 冯晓军, 郭昕, 等. GHL01炸药烤燃实验的尺寸效应与数值计算 [J]. 火炸药学报, 2014, 37(5): 37–41.
NIU Y L, FENG X J, GUO X, et al. Size effect and numerical simulation of cook-off test for GHL01 explosive [J]. Chinese Journal of Explosives & Propellants, 2014, 37(5): 37–41.
|
[9] |
赵亮, 智小琦, 高峰, 等. DNAN基熔铸混合炸药慢烤燃的尺寸效应 [J]. 火炸药学报, 2018, 41(2): 159–164.
ZHAO L, ZHI X Q, GAO F, et al. Study on the size effect of cook-off of DNAN based melting and casting mixed explosive [J]. Chinese Journal of Explosives & Propellants, 2018, 41(2): 159–164.
|
[10] |
吴浩, 段卓平, 白孟璟, 等. DNAN基含铝炸药烤燃实验与数值模拟 [J]. 含能材料, 2021, 29(5): 414–421.
WU H, DUAN Z P, BAI M J, et al. Small-scale cook-off experiments and simulations of DNAN-based aluminized explosives [J]. Chinese Journal of Energetic Materials, 2021, 29(5): 414–421.
|
[11] |
胡海波, 傅华, 李涛, 等. 压装密实炸药装药非冲击点火反应传播与烈度演化实验研究进展 [J]. 爆炸与冲击, 2020, 40(1): 011401.
HU H B, FU H, LI T, et al. Progress in experimental studies on the evolution behaviors of non-shock initiation reaction in low porosity pressed explosive with confinement [J]. Explosion and Shock Waves, 2020, 40(1): 011401.
|
[12] |
蒋超, 闻泉, 王雨时, 等. 不敏感弹药烤燃试验技术综述 [J]. 探测与控制学报, 2019, 41(2): 1–9.
JIANG C, WEN Q, WANG Y S, et al. An overview on cook-off test technology for insensitive munitions [J]. Journal of Detection & Control, 2019, 41(2): 1–9.
|
[13] |
章冠人, 陈大年. 凝聚炸药起爆动力学 [M]. 北京: 国防工业出版社, 1989.
|
[14] |
MCGUIRE R R, TARVER C M. Chemical-decomposition models for the thermal explosion of confined HMX, TATB, RDX, and TNT explosives [C]//Proceedings of the 7th Symposium (International) on Detonation. Annapolis: Naval Surface Weapons Center, 1981: 56–64.
|
[15] |
刘润泽, 王昕捷, 刘瑞峰, 等. HMX基含AP浇注炸药烤燃实验与数值模拟 [J]. 高压物理学报, 2022, 36(5): 055202.
LIU R Z, WANG X J, LIU R F, et al. Cook-off test and numerical simulation of HMX-based cast explosive containing AP [J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055202.
|
[16] |
TARVER C M, KOERNER J G. Effects of endothermic binders on times to explosion of HMX- and TATB-based plastic bonded explosives [J]. Journal of Energetic Materials, 2007, 26(1): 1–28. doi: 10.1080/07370650701719170
|
[17] |
刘瑞鹏, 贾宪振, 郭洪卫, 等. FOX-7/HMX混合炸药烤燃试验的数值计算 [J]. 科学技术与工程, 2021, 21(9): 3606–3611.
LIU R P, JIA X Z, GUO H W, et al. Simulation calculation of cook-off test on composite explosives of FOX-7/HMX [J]. Science Technology and Engineering, 2021, 21(9): 3606–3611.
|