Volume 38 Issue 2
Apr 2024
Turn off MathJax
Article Contents
HUANG Min, ZHU Benhao, XIAO Gesheng, QIAO Li. Simulation on Deformation Damage and Strain Rate Effect of Nb3Sn Composite Superconductors under Cycling Load at Extreme Low Temperature[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 024201. doi: 10.11858/gywlxb.20230755
Citation: HUANG Min, ZHU Benhao, XIAO Gesheng, QIAO Li. Simulation on Deformation Damage and Strain Rate Effect of Nb3Sn Composite Superconductors under Cycling Load at Extreme Low Temperature[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 024201. doi: 10.11858/gywlxb.20230755

Simulation on Deformation Damage and Strain Rate Effect of Nb3Sn Composite Superconductors under Cycling Load at Extreme Low Temperature

doi: 10.11858/gywlxb.20230755
  • Received Date: 17 Oct 2023
  • Rev Recd Date: 25 Nov 2023
  • Accepted Date: 25 Dec 2023
  • Available Online: 21 Jan 2024
  • Issue Publish Date: 09 Apr 2024
  • The study on damage and fracture of superconducting Nb3Sn under cyclic loading is an indispensable part of understanding the origin of the irreversible strain limit in Nb3Sn. This paper uses molecular dynamics simulation to investigate the fracture and deformation damage behavior of polycrystalline and single crystal Nb3Sn/Nb composite materials under cyclic loading at extremely low temperatures. The effects of strain rate on crack initiation and growth were carefully analyzed in both polycrystalline and single crystal Nb3Sn/Nb composite materials. The results indicate that slip occurs in single crystal Nb3Sn/Nb composite materials after cyclic loading. When the local stress at the slip band intersection exceeds the material strength, microcracks initiate at the slip band intersection, leading to fracture failure of the composite material. In contrast, the failure of polycrystalline Nb3Sn/Nb composite materials is due to the inability of stress at grain boundaries to relax under cyclic loading, which leads to the initiation of microcracks at the grain boundaries and intergranular fracture of the composite material. The analysis of the different damage, fracture, and failure mechanisms of polycrystalline and single crystal Nb3Sn/Nb composite materials at different strain rates shows that the fracture is brittle at low strain rates. As the strain rate rises, the number of slip bands in the single crystal Nb3Sn layer increases, enhancing the toughness of the single crystal Nb3Sn/Nb composite material. Conversely, the influence of grain boundaries on material strength decreases in polycrystalline materials as the strain rate increases. Moreover, polycrystalline Nb3Sn/Nb composite materials exhibit significant residual strength after local fracture of Nb3Sn at high strain rates. The research results will contribute to a better understanding of the damage evolution process of Nb3Sn/Nb composite materials under cyclic loading and offer theoretical guidance for optimizing material performance.

     

  • loading
  • [1]
    ZHANG R, GAO P F, WANG X Z. Strain dependence of critical superconducting properties of Nb3Sn with different intrinsic strains based on a semi-phenomenological approach [J]. Cryogenics, 2017, 86: 30–37. doi: 10.1016/j.cryogenics.2017.07.007
    [2]
    DEVRED A, BACKBIER I, BESSETTE D, et al. Status of ITER conductor development and production [J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 4804909. doi: 10.1109/TASC.2012.2182980
    [3]
    KIYOSHI T, MATSUMOTO S, KOSUGE M, et al. Superconducting inserts in high-field solenoids [J]. IEEE Transactions on Applied Superconductivity, 2002, 12(1): 470–475. doi: 10.1109/TASC.2002.1018445
    [4]
    DEVRED A, BACKBIER I, BESSETTE D, et al. Challenges and status of ITER conductor production [J]. Superconductor Science and Technology, 2014, 27(4): 044001. doi: 10.1088/0953-2048/27/4/044001
    [5]
    BOTTURA L, DE RIJK G, ROSSI L, et al. Advanced accelerator magnets for upgrading the LHC [J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 4002008. doi: 10.1109/TASC.2012.2186109
    [6]
    EISENSTATT L R, WRIGHT R N. Plastic deformation in polycrystalline Nb3Sn [J]. Metallurgical Transactions A, 1980, 11(7): 1131–1138. doi: 10.1007/BF02668137
    [7]
    CLARK J B, WRIGHT R N. Laboratory extrusion of Nb3Sn [J]. Metallurgical Transactions A, 1983, 14(11): 2295–2299. doi: 10.1007/BF02663304
    [8]
    OCHIAI S, OSAMURA K. Influence of cyclic loading at room temperature on the critical current at 4.2 K of Nb3Sn superconducting composite wire [J]. Cryogenics, 1992, 32(6): 584–590. doi: 10.1016/0011-2275(92)90045-C
    [9]
    WESSEL W A J, NIJHUIS A, ILYIN Y, et al. A novel “test arrangement for strain influence on strands” (TARSIS): mechanical and electrical testing of ITER Nb3Sn strands [J]. AIP Conference Proceedings, 2004, 711(1): 466–473.
    [10]
    NIJHUIS A, VAN DEN EIJNDEN N C, ILYIN Y, et al. Impact of spatial periodic bending and load cycling on the critical current of a Nb3Sn strand [J]. Superconductor Science and Technology, 2005, 18(12): S273–S283. doi: 10.1088/0953-2048/18/12/009
    [11]
    VAN DEN EIJNDEN N C, NIJHUIS A, ILYIN Y, et al. Axial tensile stress-strain characterization of ITER model coil type Nb3Sn strands in TARSIS [J]. Superconductor Science and Technology, 2005, 18(11): 1523–1532. doi: 10.1088/0953-2048/18/11/020
    [12]
    NIJHUIS A, MIYOSHI Y, JEWELL M C, et al. Systematic study on filament fracture distribution in ITER Nb3Sn strands [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 2628–2632. doi: 10.1109/TASC.2009.2018082
    [13]
    MITCHELL N. Analysis of the effect of Nb3Sn strand bending on CICC superconductor performance [J]. Cryogenics, 2002, 42(5): 311–325. doi: 10.1016/S0011-2275(02)00041-3
    [14]
    SHETH M K, LEE P, MCRAE D M, et al. Procedures for evaluating filament cracking during fatigue testing of Nb3Sn strand [J]. AIP Conference Proceedings, 2012, 1435(1): 201–208.
    [15]
    SHEN F Z, ZHANG H C, HUANG C J, et al. Experimental study on strain sensitivity of internal-tin Nb3Sn superconducting strand based on non-destructive technology [J]. Physica C: Superconductivity and Its Applications, 2021, 584: 1353784. doi: 10.1016/j.physc.2020.1353784
    [16]
    JIANG L, SU X Y, SHEN L Y, et al. Damage behavior of Nb3Sn/Cu superconducting strand at room temperature under asymmetric strain cycling [J]. Fusion Engineering and Design, 2021, 172: 112869. doi: 10.1016/j.fusengdes.2021.112869
    [17]
    TABIN J, SKOCZEŃ B, BIELSKI J. Discontinuous plastic flow in superconducting multifilament composites [J]. International Journal of Solids and Structures, 2020, 202: 12–27. doi: 10.1016/j.ijsolstr.2020.05.033
    [18]
    QIULI SUN E. Multi-scale nonlinear stress analysis of Nb3Sn superconducting accelerator magnets [J]. Superconductor Science and Technology, 2022, 35(4): 045019. doi: 10.1088/1361-6668/ac5a11
    [19]
    MITCHELL N. Finite element simulations of elasto-plastic processes in Nb3Sn strands [J]. Cryogenics, 2005, 45(7): 501–515. doi: 10.1016/j.cryogenics.2005.06.003
    [20]
    WANG X, LI Y X, GAO Y W. Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading [J]. Cryogenics, 2016, 73: 14–24. doi: 10.1016/j.cryogenics.2015.11.002
    [21]
    JIANG L, ZHANG X Y, ZHOU Y H. Nonlinear static and dynamic mechanical behaviors of Nb3Sn superconducting composite wire: experiment and analysis [J]. Acta Mechanica Sinica, 2023, 39(3): 122322. doi: 10.1007/s10409-022-22322-x
    [22]
    LEE J, POSEN S, MAO Z G, et al. Atomic-scale analyses of Nb3Sn on Nb prepared by vapor diffusion for superconducting radiofrequency cavity applications: a correlative study [J]. Superconductor Science and Technology, 2019, 32(2): 024001. doi: 10.1088/1361-6668/aaf268
    [23]
    ZHANG Y, ASHCRAFT R, MENDELEV M I, et al. Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy [J]. The Journal of Chemical Physics, 2016, 145(20): 204505. doi: 10.1063/1.4968212
    [24]
    KO W S, KIM D H, KWON Y J, et al. Atomistic simulations of pure tin based on a new modified embedded-atom method interatomic potential [J]. Metals, 2018, 8(11): 900. doi: 10.3390/met8110900
    [25]
    CHUDINOV V G, GOGOLIN V P, GOSHCHITSKII B N, et al. Simulation of collision cascades in intermetallic Nb3Sn compounds [J]. Physica Status Solidi (A), 1981, 67(1): 61–67. doi: 10.1002/pssa.2210670103
    [26]
    LUTSKO J F. Stress and elastic constants in anisotropic solids: molecular dynamics techniques [J]. Journal of Applied Physics, 1988, 64(3): 1152–1154. doi: 10.1063/1.341877
    [27]
    PENG Y X, KNIGHT C, BLOOD P, et al. Extending parallel scalability of LAMMPS and multiscale reactive molecular simulations [C]//Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the eXtreme to the Campus and Beyond. Chicago: ACM, 2012: 37.
    [28]
    PAPADIMITRIOU I, UTTON C, TSAKIROPOULOS P. Ab initio investigation of the intermetallics in the Nb-Sn binary system [J]. Acta Materialia, 2015, 86: 23–33. doi: 10.1016/j.actamat.2014.12.017
    [29]
    SUNDARESWARI M, RAMASUBRAMANIAN S, RAJAGOPALAN M. Elastic and thermodynamical properties of A15 Nb3X (X = Al, Ga, In, Sn and Sb) compounds-first principles DFT study [J]. Solid State Communications, 2010, 150(41/42): 2057–2060.
    [30]
    ZHANG R, GAO P F, WANG X Z, et al. First-principles study on elastic and superconducting properties of Nb3Sn and Nb3Al under hydrostatic pressure [J]. AIP Advances, 2015, 5(10): 107233. doi: 10.1063/1.4935099
    [31]
    DE MARZI G, MORICI L, MUZZI L, et al. Strain sensitivity and superconducting properties of Nb3Sn from first principles calculations [J]. Journal of Physics: Condensed Matter, 2013, 25(13): 135702. doi: 10.1088/0953-8984/25/13/135702
    [32]
    ESHELBY J D. Dynamical theory of crystal lattices: Max Born and Kun Huang: Oxford University Press, 1954, pp. xii+420. 50s. net. [J]. Journal of the Mechanics and Physics of Solids, 1955, 3(3): 231.
    [33]
    SCHEUERLEIN C, DI MICHIEL M, BUTA F, et al. Stress distribution and lattice distortions in Nb3Sn multifilament wires under uniaxial tensile loading at 4.2 K [J]. Superconductor Science and Technology, 2014, 27(4): 044021. doi: 10.1088/0953-2048/27/4/044021
    [34]
    时海芳, 任鑫. 材料力学性能 [M]. 2版. 北京: 北京大学出版社, 2015: 181–183.

    SHI H F, REN X. Mechanical properties of materials [M]. 2nd ed. Beijing: Peking University Press, 2015: 181–183.
    [35]
    LIANG L W, WANG Y J, CHEN Y, et al. Dislocation nucleation and evolution at the ferrite-cementite interface under cyclic loadings [J]. Acta Materialia, 2020, 186: 267–277. doi: 10.1016/j.actamat.2019.12.052
    [36]
    ESSMANN U, MUGHRABI H. Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities [J]. Philosophical Magazine A, 1979, 40(6): 731–756. doi: 10.1080/01418617908234871
    [37]
    ZOTOV N, GRABOWSKI B. Molecular dynamics simulations of screw dislocation mobility in bcc Nb [J]. Modelling and Simulation in Materials Science and Engineering, 2021, 29(8): 085007. doi: 10.1088/1361-651X/ac2b02
    [38]
    SPARKS G, MAAß R. Shapes and velocity relaxation of dislocation avalanches in Au and Nb microcrystals [J]. Acta Materialia, 2018, 152: 86–95. doi: 10.1016/j.actamat.2018.04.007
    [39]
    PADILLA II H A, BOYCE B L. A review of fatigue behavior in nanocrystalline metals [J]. Experimental Mechanics, 2010, 50(1): 5–23. doi: 10.1007/s11340-009-9301-2
    [40]
    KUMAR K S, SURESH S, CHISHOLM M F, et al. Deformation of electrodeposited nanocrystalline nickel [J]. Acta Materialia, 2003, 51(2): 387–405. doi: 10.1016/S1359-6454(02)00421-4
    [41]
    OVID’KO I A, SHEINERMAN A G. Triple junction nanocracks in fatigued nanocrystalline materials [J]. Reviews on Advanced Materials Science, 2004, 7(1): 61–66.
    [42]
    OVID’KO I A, SHEINERMAN A G. Grain size effect on crack blunting in nanocrystalline materials [J]. Scripta Materialia, 2009, 60(8): 627–630. doi: 10.1016/j.scriptamat.2008.12.028
    [43]
    SUENAGA M, JANSEN W. Chemical compositions at and near the grain boundaries in bronze-processed superconducting Nb3Sn [J]. Applied Physics Letters, 1983, 43(8): 791–793. doi: 10.1063/1.94457
    [44]
    OCHIAI S, OSAMURA K, UEHARA T. Grain size and its relation to tensile strength of Nb3Sn compound in bronze-processed multi-filamentary superconducting materials [J]. Journal of Materials Science, 1987, 22(6): 2163–2168. doi: 10.1007/BF01132954
    [45]
    OH S H, JEONG Y J, NA S H, et al. Atomic behavior of Ti in A15 Nb3Sn and its effects on diffusional growth of Nb3Sn layer [J]. Journal of Alloys and Compounds, 2023, 957: 170438. doi: 10.1016/j.jallcom.2023.170438
    [46]
    OCHIAI S, OSAMURA K, MAEKAWA M. Comparison of mechanical and superconducting properties of titanium-added Nb3Sn composite wire with those of non-added ones [J]. Superconductor Science and Technology, 1991, 4(6): 262–269. doi: 10.1088/0953-2048/4/6/009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(27)  / Tables(1)

    Article Metrics

    Article views(123) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return