Citation: | LIU Lin, WANG Junfeng, LIU Xiaodi. Quantum Magnetic Measurement under High Pressure Based on Color Centres in Silicon Carbide[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 060102. doi: 10.11858/gywlxb.20230750 |
[1] |
DALLADAY-SIMPSON P, HOWIE R T, GREGORYANZ E. Evidence for a new phase of dense hydrogen above 325 gigapascals [J]. Nature, 2016, 529(7584): 63–67. doi: 10.1038/nature16164
|
[2] |
LIU X D, HOWIE R T, ZHANG H C, et al. High-pressure behavior of hydrogen and deuterium at low temperatures [J]. Physical Review Letters, 2017, 119(6): 065301. doi: 10.1103/PhysRevLett.119.065301
|
[3] |
DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
|
[4] |
DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964
|
[5] |
MAO H K, CHEN B, GOU H Y, et al. 2020: transformative science in the pressure dimension [J]. Matter and Radiation at Extremes, 2021, 6(1): 013001. doi: 10.1063/5.0040607
|
[6] |
LUO H, BU K J, YIN Y F, et al. Anomalous charge transfer from organic ligands to metal halides in zero-dimensional [(C6H5)4P]2SbCl5 enabled by pressure-induced lone pair-π interaction [J]. Angewandte Chemie International Edition, 2023, 62(37): e202304494. doi: 10.1002/anie.202304494
|
[7] |
LV X J, STOUMPOS C, HU Q Y, et al. Regulating off-centering distortion maximizes photoluminescence in halide perovskites [J]. National Science Review, 2021, 8(9): nwaa288. doi: 10.1093/nsr/nwaa288
|
[8] |
BHATTACHARYYA P, CHEN W H, HUANG X L, et al. Imaging the Meissner effect and flux trapping in a hydride superconductor at megabar pressures using a nanoscale quantum sensor [EB/OL]. arXiv: 2306.03122. (2023-06-05) [2023-10-10]. https://arxiv.org/abs/2306.03122.
|
[9] |
HUANG X L, WANG X, DUAN D F, et al. High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility [J]. National Science Review, 2019, 6(4): 713–718. doi: 10.1093/nsr/nwz061
|
[10] |
HSIEH S, BHATTACHARYYA P, ZU C, et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor [J]. Science, 2019, 366(6471): 1349–1354. doi: 10.1126/science.aaw4352
|
[11] |
YIP K Y, HO K O, YU K Y, et al. Measuring magnetic field texture in correlated electron systems under extreme conditions [J]. Science, 2019, 366(6471): 1355–1359. doi: 10.1126/science.aaw4278
|
[12] |
LESIK M, PLISSON T, TORAILLE L, et al. Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers [J]. Science, 2019, 366(6471): 1359–1362. doi: 10.1126/science.aaw4329
|
[13] |
SHANG Y X, HONG F, DAI J H, et al. Magnetic sensing inside a diamond anvil cell via nitrogen-vacancy center spins [J]. Chinese Physics Letters, 2019, 36(8): 086201. doi: 10.1088/0256-307X/36/8/086201
|
[14] |
彭世杰, 刘颖, 马文超, 等. 基于金刚石氮-空位色心的精密磁测量 [J]. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
PENG S J, LIU Y, MA W C, et al. High-resolution magnetometry based on nitrogen-vacancy centers in diamond [J]. Acta Physica Sinica, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
|
[15] |
ACOSTA V M, BAUCH E, LEDBETTER M P, et al. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond [J]. Physical Review Letters, 2010, 104(7): 070801. doi: 10.1103/PhysRevLett.104.070801
|
[16] |
CHRISTLE D J, KLIMOV P V, DE LAS CASAS C F, et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface [J]. Physical Review X, 2017, 7(2): 021046.
|
[17] |
CHRISTLE D J, FALK A L, ANDRICH P, et al. Isolated electron spins in silicon carbide with millisecond coherence times [J]. Nature Materials, 2015, 14(2): 160–163.
|
[18] |
WIDMANN M, LEE S Y, RENDLER T, et al. Coherent control of single spins in silicon carbide at room temperature [J]. Nature Materials, 2015, 14(2): 164–168. doi: 10.1038/nmat4145
|
[19] |
KOEHL W F, BUCKLEY B B, HEREMANS F J, et al. Room temperature coherent control of defect spin qubits in silicon carbide [J]. Nature, 2011, 479(7371): 84–87. doi: 10.1038/nature10562
|
[20] |
ZARGALEH S A, VON BARDELEBEN H J, CANTIN J L, et al. Electron paramagnetic resonance tagged high-resolution excitation spectroscopy of NV-centers in 4H-SiC [J]. Physical Review B, 2018, 98(21): 214113. doi: 10.1103/PhysRevB.98.214113
|
[21] |
WOLFOWICZ G, ANDERSON C P, DILER B, et al. Vanadium spin qubits as telecom quantum emitters in silicon carbide [J]. Science Advances, 2020, 6(18): eaaz1192.
|
[22] |
GRUBER A, DRÄBENSTEDT A, TIETZ C, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers [J]. Science, 1997, 276(5321): 2012–2014. doi: 10.1126/science.276.5321.2012
|
[23] |
DOHERTY M W, STRUZHKIN V V, SIMPSON D A, et al. Electronic properties and metrology applications of the diamond NV- center under pressure [J]. Physical Review Letters, 2014, 112(4): 047601. doi: 10.1103/PhysRevLett.112.047601
|
[24] |
WANG J F, LIU L, LIU X D, et al. Magnetic detection under high pressures using designed silicon vacancy centres in silicon carbide [J]. Nature Materials, 2023, 22(4): 489–494. doi: 10.1038/s41563-023-01477-5
|
[25] |
ANISIMOV A N, SIMIN D, SOLTAMOV V A, et al. Optical thermometry based on level anticrossing in silicon carbide [J]. Scientific Reports, 2016, 6(1): 33301. doi: 10.1038/srep33301
|
[26] |
FALK A L, BUCKLEY B B, CALUSINE G, et al. Polytype control of spin qubits in silicon carbide [J]. Nature Communications, 2013, 4(1): 1819. doi: 10.1038/ncomms2854
|
[27] |
LIU L, WANG J F, LIU X D, et al. Coherent control and magnetic detection of divacancy spins in silicon carbide at high pressures [J]. Nano Letters, 2022, 22(24): 9943–9950. doi: 10.1021/acs.nanolett.2c03378
|
[28] |
NAGY R, NIETHAMMER M, WIDMANN M, et al. High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide [J]. Nature Communications, 2019, 10(1): 1954. doi: 10.1038/s41467-019-09873-9
|