Volume 38 Issue 2
Apr 2024
Turn off MathJax
Article Contents
GUO Jianning, WANG Yulong, ZHU Chengcheng, HUANG Xiaoli, CUI Tian. Progress of Experimental Research on Binary Hydride Superconductors under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020102. doi: 10.11858/gywlxb.20230742
Citation: GUO Jianning, WANG Yulong, ZHU Chengcheng, HUANG Xiaoli, CUI Tian. Progress of Experimental Research on Binary Hydride Superconductors under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020102. doi: 10.11858/gywlxb.20230742

Progress of Experimental Research on Binary Hydride Superconductors under High Pressure

doi: 10.11858/gywlxb.20230742
  • Received Date: 27 Sep 2023
  • Rev Recd Date: 17 Jan 2024
  • Accepted Date: 17 Jan 2024
  • Available Online: 11 Apr 2024
  • Issue Publish Date: 09 Apr 2024
  • Since the discovery of superconductivity by the famous physicist Onnes in 1911, people have constantly tried to improve the superconducting transition temperature, and the room-temperature superconductors have also been a century-old dream of human beings. In the course of nearly a hundred years of research, it has constantly updated people’s understanding of superconductivity, enhanced people’s confidence in further improving the superconducting transition temperature and exploring the mechanism of high temperature superconductivity that scientists have discovered copper based superconductors, iron based superconductors and McMillan limit superconductors (like MgB2). Recently, new hydrogen-rich compounds predicted theoretically and verified experimentally have shown great potential for high temperature superconductivity even room temperature superconductivity, becoming one of the best candidates for room temperature superconductors. It is worth noting that some sulfur hydrides and lanthanum hydrides have superconductivity of more than 200 K under high pressure, leading a research boom of hydrogen-rich compounds and some important theoretical and experimental results have emerged. This paper focuses on the current research progress of hydrogen-rich superconductors, summarizes the crystal structure properties and superconducting properties of new hydrogen-rich compounds from the perspective of different hydrogen structural units and hydrogen bonding characteristics. Five kinds of superconductors in hydrogen-rich compounds are introduced in this paper: interstitial type, ionic type, covalent type, cage type and molecular type, and some general rules affecting the superconducting transition temperature are summarized through comparative analysis of different types of hydrogen-rich compound superconductors. In the end, the current experimental problems to be solved and the future experimental direction are put forward.

     

  • loading
  • [1]
    ONNES H K. The superconductivity of mercury [J]. Comm Phys Lab Univ Leiden, 1911, 122: 122–124.
    [2]
    GAO L, XUE Y Y, CHEN F, et al. Superconductivity up to 164 K in HgBa2Ca m -1Cu m O2 m +2+ δ ( m=1, 2, and 3) under quasihydrostatic pressures [J]. Physical Review B, 1994, 50(6): 4260–4263. doi: 10.1103/PhysRevB.50.4260
    [3]
    BARDEEN J, COOPER L N, SCHRIEFFER J R. Theory of superconductivity [J]. Physical Review, 1957, 108(5): 1175–1204. doi: 10.1103/PhysRev.108.1175
    [4]
    ASHCROFT N W. Metallic hydrogen: a high-temperature superconductor? [J]. Physical Review Letters, 1968, 21(26): 1748–1749. doi: 10.1103/PhysRevLett.21.1748
    [5]
    MCMAHON J M, CEPERLEY D M. High-temperature superconductivity in atomic metallic hydrogen [J]. Physical Review B, 2011, 84(14): 144515. doi: 10.1103/PhysRevB.84.144515
    [6]
    ASHCROFT N W. Hydrogen dominant metallic alloys: high temperature superconductors? [J]. Physical Review Letters, 2004, 92(18): 187002. doi: 10.1103/PhysRevLett.92.187002
    [7]
    DUAN D F, LIU Y X, TIAN F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high- Tc superconductivity [J]. Scientific Reports, 2014, 4(1): 6968. doi: 10.1038/srep06968
    [8]
    DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964
    [9]
    HUANG X L, WANG X, DUAN D F, et al. High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility [J]. National Science Review, 2019, 6(4): 713–718. doi: 10.1093/nsr/nwz061
    [10]
    LIU H Y, NAUMOV I I, HOFFMANN R, et al. Potential high- Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6990–6995. doi: 10.1073/pnas.1704505114
    [11]
    PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001
    [12]
    DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
    [13]
    CHEN W H, SEMENOK D V, HUANG X L, et al. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar [J]. Physical Review Letters, 2021, 127(11): 117001. doi: 10.1103/PhysRevLett.127.117001
    [14]
    TROYAN I A, SEMENOK D V, KVASHNIN A G, et al. Anomalous high-temperature superconductivity in YH6 [J]. Advanced Materials, 2021, 33(15): 2006832. doi: 10.1002/adma.202006832
    [15]
    KONG P P, MINKOV V S, KUZOVNIKOV M A, et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure [J]. Nature Communications, 2021, 12(1): 5075. doi: 10.1038/s41467-021-25372-2
    [16]
    MA L, WANG K, XIE Y, et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa [J]. Physical Review Letters, 2022, 128(16): 167001. doi: 10.1103/PhysRevLett.128.167001
    [17]
    SEMENOK D V, KVASHNIN A G, IVANOVA A G, et al. Superconductivity at 161 K in thorium hydride ThH10: synthesis and properties [J]. Materials Today, 2020, 33: 36–44. doi: 10.1016/j.mattod.2019.10.005
    [18]
    NAGAMATSU J, NAKAGAWA N, MURAMATSU T, et al. Superconductivity at 39 K in magnesium diboride [J]. Nature, 2001, 410(6824): 63–64. doi: 10.1038/35065039
    [19]
    REN Z A, LU W, YANG J, et al. Superconductivity at 55 K in iron-based f-doped layered quaternary compound Sm[O1 x F x ] FeAs [J]. Chinese Physics Letters, 2008, 25(6): 2215–2216. doi: 10.1088/0256-307X/25/6/080
    [20]
    KIHLSTROM K E, MAEL D, GEBALLE T H. Tunneling α2 F( ω) and heat-capacity measurements in high- Tc Nb3Ge [J]. Physical Review B, 1984, 29(1): 150–158. doi: 10.1103/PhysRevB.29.150
    [21]
    GUO J N, SHUTOV G, CHEN S, et al. Stabilization of high-temperature superconducting A15 phase La4H23 below 100 GPa [EB/OL]. arXiv: 2307.13067. (2023-11-20)[2023-09-27]. https://arxiv.org/abs/2307.13067v1.
    [22]
    LI X, HUANG X L, DUAN D F, et al. Polyhydride CeH9 with an atomic-like hydrogen clathrate structure [J]. Nature Communications, 2019, 10(1): 3461. doi: 10.1038/s41467-019-11330-6
    [23]
    ROTUNDU C R, ĆUK T, GREENE R L, et al. High-pressure resistivity technique for quasi-hydrostatic compression experiments [J]. Review of Scientific Instruments, 2013, 84(6): 063903. doi: 10.1063/1.4809025
    [24]
    MINKOV V S, BUD’KO S L, BALAKIREV F F, et al. Magnetic field screening in hydrogen-rich high-temperature superconductors [J]. Nature Communications, 2022, 13(1): 3194. doi: 10.1038/s41467-022-30782-x
    [25]
    MINKOV V S, KSENOFONTOV V, BUD’KO S L, et al. Magnetic flux trapping in hydrogen-rich high-temperature superconductors [J]. Nature Physics, 2023, 19(9): 1293–1300. doi: 10.1038/s41567-023-02089-1
    [26]
    黄晓丽, 王鑫, 刘明坤, 等. 极端条件下物质磁性的原位测量 [J]. 物理学报, 2017, 66(3): 037403. doi: 10.7498/aps.66.037403

    HUANG X L, WANG X, LIU M K, et al. In-situ magnetic measurements of substances under extreme conditions [J]. Acta Physica Sinica, 2017, 66(3): 037403. doi: 10.7498/aps.66.037403
    [27]
    WORSHAM J E JR, WILKINSON M K, SHULL C G. Neutron-diffraction observations on the palladium-hydrogen and palladium-deuterium systems [J]. Journal of Physics and Chemistry of Solids, 1957, 3(3/4): 303–310. doi: 10.1016/0022-3697(57)90033-1
    [28]
    KAWAE T, INAGAKI Y, WEN S, et al. Superconductivity in palladium hydride systems [J]. Journal of the Physical Society of Japan, 2020, 89(5): 051004. doi: 10.7566/JPSJ.89.051004
    [29]
    SCHIRBER J E, NORTHRUP C J M JR. Concentration dependence of the superconducting transition temperature in PdH x and PdD x [J]. Physical Review B, 1974, 10(9): 3818–3820. doi: 10.1103/PhysRevB.10.3818
    [30]
    HEMMES H, DRIESSEN A, GRIESSEN R, et al. Isotope effects and pressure dependence of the Tc of superconducting stoichiometric PdH and PdD synthesized and measured in a diamond anvil cell [J]. Physical Review B, 1989, 39(7): 4110–4118. doi: 10.1103/PhysRevB.39.4110
    [31]
    SKOSKIEWICZ T. Superconductivity in the palladium-hydrogen and palladium-nickel-hydrogen systems [J]. Physica Status Solidi (A), 1972, 11(2): K123–K126. doi: 10.1002/pssa.2210110253
    [32]
    STRITZKER B, BUCKEL W. Superconductivity in the palladium-hydrogen and the palladium-deuterium systems [J]. Zeitschrift für Physik a Hadrons and Nuclei, 1972, 257(1): 1–8. doi: 10.1007/BF01398191
    [33]
    TRIPODI P, DI GIOACCHINO D, BORELLI R, et al. Possibility of high temperature superconducting phases in PdH [J]. Physica C: Superconductivity, 2003, 388/389: 571–572. doi: 10.1016/S0921-4534(02)02745-4
    [34]
    KLEIN B M, ECONOMOU E N, PAPACONSTANTOPOULOS D A. Inverse isotope effect and the x dependence of the superconducting transition temperature in PdH x and PdD x [J]. Physical Review Letters, 1977, 39(9): 574–577. doi: 10.1103/PhysRevLett.39.574
    [35]
    JENA P, JONES J, NIEMINEN R M. Effect of zero-point motion on the superconducting transition temperature of PdH(D) [J]. Physical Review B, 1984, 29(7): 4140–4143. doi: 10.1103/PhysRevB.29.4140
    [36]
    MILLER R J, SATTERTHWAITE C B. Electronic model for the reverse isotope effect in superconducting Pd-H(D) [J]. Physical Review Letters, 1975, 34(3): 144–148. doi: 10.1103/PhysRevLett.34.144
    [37]
    KLEIN B M, COHEN R E. Anharmonicity and the inverse isotope effect in the palladium-hydrogen system [J]. Physical Review B, 1992, 45(21): 12405–12414. doi: 10.1103/PhysRevB.45.12405
    [38]
    ERREA I, CALANDRA M, MAURI F. First-principles theory of anharmonicity and the inverse isotope effect in superconducting palladium-hydride compounds [J]. Physical Review Letters, 2013, 111(17): 177002. doi: 10.1103/PhysRevLett.111.177002
    [39]
    KIM D Y, SCHEICHER R H, PICKARD C J, et al. Predicted formation of superconducting platinum-hydride crystals under pressure in the presence of molecular hydrogen [J]. Physical Review Letters, 2011, 107(11): 117002. doi: 10.1103/PhysRevLett.107.117002
    [40]
    SCHELER T, DEGTYAREVA O, MARQUÉS M, et al. Synthesis and properties of platinum hydride [J]. Physical Review B, 2011, 83(21): 214106. doi: 10.1103/PhysRevB.83.214106
    [41]
    MATSUOKA T, HISHIDA M, KUNO K, et al. Superconductivity of platinum hydride [J]. Physical Review B, 2019, 99(14): 144511. doi: 10.1103/PhysRevB.99.144511
    [42]
    ABE K. Metallic silicon subhydrides at high pressures studied by ab initio calculations [J]. Physical Review B, 2021, 103(13): 134118. doi: 10.1103/PhysRevB.103.134118
    [43]
    MARTINEZ-CANALES M, OGANOV A R, MA Y M, et al. Novel structures and superconductivity of silane under pressure [J]. Physical Review Letters, 2009, 102(8): 087005. doi: 10.1103/PhysRevLett.102.087005
    [44]
    PICKARD C J, NEEDS R J. High-pressure phases of silane [J]. Physical Review Letters, 2006, 97(4): 045504. doi: 10.1103/PhysRevLett.97.045504
    [45]
    STROBEL T A, GONCHAROV A F, SEAGLE C T, et al. High-pressure study of silane to 150 GPa [J]. Physical Review B, 2011, 83(14): 144102. doi: 10.1103/PhysRevB.83.144102
    [46]
    FENG J, GROCHALA W, JAROŃ T, et al. Structures and potential superconductivity in SiH4 at high pressure: en route to “metallic hydrogen” [J]. Physical Review Letters, 2006, 96(1): 017006. doi: 10.1103/PhysRevLett.96.017006
    [47]
    HANFLAND M, PROCTOR J E, GUILLAUME C L, et al. High-pressure synthesis, amorphization, and decomposition of silane [J]. Physical Review Letters, 2011, 106(9): 095503. doi: 10.1103/PhysRevLett.106.095503
    [48]
    EREMETS M I, TROJAN I A, MEDVEDEV S A, et al. Superconductivity in hydrogen dominant materials: silane [J]. Science, 2008, 319(5869): 1506–1509. doi: 10.1126/science.1153282
    [49]
    TSE J S, YAO Y, TANAKA K. Novel superconductivity in metallic SnH4 under high pressure [J]. Physical Review Letters, 2007, 98(11): 117004. doi: 10.1103/PhysRevLett.98.117004
    [50]
    HONG F, SHAN P F, YANG L X, et al. Possible superconductivity at ~70 K in tin hydride SnH x under high pressure [J]. Materials Today Physics, 2022, 22: 100596. doi: 10.1016/j.mtphys.2021.100596
    [51]
    TROYAN I A, SEMENOK D V, IVANOVA A G, et al. Non-fermi-liquid behavior of superconducting SnH4 [J]. Advanced Science, 2023, 10(30): 2303622. doi: 10.1002/advs.202303622
    [52]
    WANG L C, TIAN F B, FENG W X, et al. Order-disorder phase transition and dissociation of hydrogen sulfide under high pressure: ab initio molecular dynamics study [J]. The Journal of Chemical Physics, 2010, 132(16): 164506. doi: 10.1063/1.3392673
    [53]
    LI Y W, HAO J, LIU H Y, et al. The metallization and superconductivity of dense hydrogen sulfide [J]. The Journal of Chemical Physics, 2014, 140(17): 174712. doi: 10.1063/1.4874158
    [54]
    FUJIHISA H, YAMAWAKI H, SAKASHITA M, et al. Molecular dissociation and two low-temperature high-pressure phases of H2S [J]. Physical Review B, 2004, 69(21): 214102. doi: 10.1103/PhysRevB.69.214102
    [55]
    EINAGA M, SAKATA M, ISHIKAWA T, et al. Crystal structure of the superconducting phase of sulfur hydride [J]. Nature Physics, 2016, 12(9): 835–838. doi: 10.1038/nphys3760
    [56]
    GUIGUE B, MARIZY A, LOUBEYRE P. Direct synthesis of pure H3S from S and H elements: no evidence of the cubic superconducting phase up to 160 GPa [J]. Physical Review B, 2017, 95(2): 020104. doi: 10.1103/PhysRevB.95.020104
    [57]
    GONCHAROV A F, LOBANOV S S, PRAKAPENKA V B, et al. Stable high-pressure phases in the H-S system determined by chemically reacting hydrogen and sulfur [J]. Physical Review B, 2017, 95(14): 140101. doi: 10.1103/PhysRevB.95.140101
    [58]
    CAPITANI F, LANGEROME B, BRUBACH J B, et al. Spectroscopic evidence of a new energy scale for superconductivity in H3S [J]. Nature Physics, 2017, 13(9): 859–863. doi: 10.1038/nphys4156
    [59]
    TROYAN I, GAVRILIUK A, RÜFFER R, et al. Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering [J]. Science, 2016, 351(6279): 1303–1306. doi: 10.1126/science.aac8176
    [60]
    SATTERTHWAITE C B, PETERSON D T. Preparation, electrical and superconducting properties of massive Th4H15 [J]. Journal of the Less Common Metals, 1972, 26(3): 361–368. doi: 10.1016/0022-5088(72)90085-9
    [61]
    SHEIN I R, SHEIN K I, MEDVEDEVA N I, et al. Electronic band structure of thorium hydrides: ThH2 and Th4H15 [J]. Physica B: Condensed Matter, 2007, 389(2): 296–301. doi: 10.1016/j.physb.2006.07.001
    [62]
    TALANTSEV E F. The electron-phonon coupling constant and the Debye temperature in polyhydrides of thorium, hexadeuteride of yttrium, and metallic hydrogen phase Ⅲ [J]. Journal of Applied Physics, 2021, 130(19): 195901. doi: 10.1063/5.0065003
    [63]
    WANG N N, SHAN P F, CHEN K Y, et al. A low- Tc superconducting modification of Th4H15 synthesized under high pressure [J]. Superconductor Science and Technology, 2021, 34(3): 034006. doi: 10.1088/1361-6668/abdcc2
    [64]
    SATTERTHWAITE C B, TOEPKE I L. Superconductivity of hydrides and deuterides of thorium [J]. Physical Review Letters, 1970, 25(11): 741–743. doi: 10.1103/PhysRevLett.25.741
    [65]
    MILLER J F, CATON R H, SATTERTHWAITE C B. Low-temperature heat capacity of normal and superconducting thorium hydride and thorium deuteride [J]. Physical Review B, 1976, 14(7): 2795–2800. doi: 10.1103/PhysRevB.14.2795
    [66]
    DIETRICH M, REICHARDT W, RIETSCHEL H. Phonon densities of states of the thorium hydrides [J]. Solid State Communications, 1977, 21(6): 603–605. doi: 10.1016/0038-1098(77)90043-6
    [67]
    DIETRICH M, GEY W, RIETSCHEL H, et al. Pressure dependence of the superconducting transition temperature of Th4H15 [J]. Solid State Communications, 1974, 15(5): 941–943. doi: 10.1016/0038-1098(74)90699-1
    [68]
    KUZOVNIKOV M A, TKACZ M. High-pressure synthesis of novel polyhydrides of Zr and Hf with a Th4H15-type structure [J]. The Journal of Physical Chemistry C, 2019, 123(50): 30059–30066. doi: 10.1021/acs.jpcc.9b07918
    [69]
    XIE H, ZHANG W T, DUAN D F, et al. Superconducting zirconium polyhydrides at moderate pressures [J]. The Journal of Physical Chemistry Letters, 2020, 11(3): 646–651. doi: 10.1021/acs.jpclett.9b03632
    [70]
    ZHANG C L, HE X, LI Z W, et al. Superconductivity in zirconium polyhydrides with Tc above 70 K [J]. Science Bulletin, 2022, 67(9): 907–909. doi: 10.1016/j.scib.2022.03.001
    [71]
    ABE K. High-pressure properties of dense metallic zirconium hydrides studied by ab initio calculations [J]. Physical Review B, 2018, 98(13): 134103. doi: 10.1103/PhysRevB.98.134103
    [72]
    SNIDER E, DASENBROCK-GAMMON N, MCBRIDE R, et al. Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures [J]. Physical Review Letters, 2021, 126(11): 117003. doi: 10.1103/PhysRevLett.126.117003
    [73]
    SOMAYAZULU M, AHART M, MISHRA A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures [J]. Physical Review Letters, 2019, 122(2): 027001. doi: 10.1103/PhysRevLett.122.027001
    [74]
    HONG F, YANG L X, SHAN P F, et al. Superconductivity of lanthanum superhydride investigated using the standard four-probe configuration under high pressures [J]. Chinese Physics Letters, 2020, 37(10): 107401. doi: 10.1088/0256-307X/37/10/107401
    [75]
    SUN D, MINKOV V S, MOZAFFARI S, et al. High-temperature superconductivity on the verge of a structural instability in lanthanum superhydride [J]. Nature Communications, 2021, 12(1): 6863. doi: 10.1038/s41467-021-26706-w
    [76]
    GUO J N, CHEN S, CHEN W H, et al. Advances in the synthesis and superconductivity of lanthanide polyhydrides under high pressure [J]. Frontiers in Electronic Materials, 2022, 2: 906213. doi: 10.3389/femat.2022.906213
    [77]
    ABD-SHUKOR R. Coherence length versus transition temperature of hydride-based and room temperature superconductors [J]. Results in Physics, 2021, 25: 104219. doi: 10.1016/j.rinp.2021.104219
    [78]
    GE Y F, ZHANG F, HEMLEY R J. Room-temperature superconductivity in boron- and nitrogen-doped lanthanum superhydride [J]. Physical Review B, 2021, 104(21): 214505. doi: 10.1103/PhysRevB.104.214505
    [79]
    KVASHNIN A G, SEMENOK D V, KRUGLOV I A, et al. High-temperature superconductivity in a Th-H system under pressure conditions [J]. ACS Applied Materials & Interfaces, 2018, 10(50): 43809–43816. doi: 10.1021/acsami.8b17100
    [80]
    LI Y W, HAO J, LIU H Y, et al. Pressure-stabilized superconductive yttrium hydrides [J]. Scientific Reports, 2015, 5: 9948. doi: 10.1038/srep09948
    [81]
    SHAO M Y, CHEN W H, ZHANG K X, et al. High-pressure synthesis of superconducting clathratelike YH4 [J]. Physical Review B, 2021, 104(17): 174509. doi: 10.1103/PhysRevB.104.174509
    [82]
    GRIESSEN R, WEN H H, VAN DALEN A J J, et al. Evidence for mean free path fluctuation induced pinning in YBa2Cu3O7 and YBa2Cu4O8 films [J]. Physical Review Letters, 1994, 72(12): 1910–1913. doi: 10.1103/PhysRevLett.72.1910
    [83]
    LI B, MIAO Z L, TI L, et al. Predicted high-temperature superconductivity in cerium hydrides at high pressures [J]. Journal of Applied Physics, 2019, 126(23): 235901. doi: 10.1063/1.5130583
    [84]
    LI X, HUANG X L, CHEN W H, et al. New cage-like cerium trihydride stabilized at ambient conditions [J]. CCS Chemistry, 2022, 4(3): 825–831. doi: 10.31635/ccschem.021.202100799
    [85]
    SALKE N P, DAVARI ESFAHANI M M, ZHANG Y J, et al. Synthesis of clathrate cerium superhydride CeH9 at 80−100 GPa with atomic hydrogen sublattice [J]. Nature Communications, 2019, 10(1): 4453. doi: 10.1038/s41467-019-12326-y
    [86]
    WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466. doi: 10.1073/pnas.1118168109
    [87]
    LI Z W, HE X, ZHANG C L, et al. Superconductivity above 200 K discovered in superhydrides of calcium [J]. Nature Communications, 2022, 13(1): 2863. doi: 10.1038/s41467-022-30454-w
    [88]
    CHEN W H, SEMENOK D V, KVASHNIN A G, et al. Synthesis of molecular metallic barium superhydride: pseudocubic BaH12 [J]. Nature Communications, 2021, 12(1): 273. doi: 10.1038/s41467-020-20103-5
    [89]
    LUO W, AHUJA R. Ab initio prediction of high-pressure structural phase transition in BaH2 [J]. Journal of Alloys and Compounds, 2007, 446/447: 405–408. doi: 10.1016/j.jallcom.2006.12.103
    [90]
    HOOPER J, ALTINTAS B, SHAMP A, et al. Polyhydrides of the alkaline earth metals: a look at the extremes under pressure [J]. The Journal of Physical Chemistry C, 2013, 117(6): 2982–2992. doi: 10.1021/jp311571n
    [91]
    TSE J S, SONG Z, YAO Y S, et al. Structure and electronic properties of BaH2 at high pressure [J]. Solid State Communications, 2009, 149(43/44): 1944–1946. doi: 10.1016/j.ssc.2009.07.044
    [92]
    ZHANG X, WANG X L, WANG Q L, et al. Hydride ion (H) transport behavior in barium hydride under high pressure [J]. Physical Chemistry Chemical Physics, 2018, 20(13): 8917–8923. doi: 10.1039/C7CP08386F
    [93]
    PEÑA-ALVAREZ M, BINNS J, MARTINEZ-CANALES M, et al. Synthesis of weaire-phelan barium polyhydride [J]. The Journal of Physical Chemistry Letters, 2021, 12(20): 4910–4916. doi: 10.1021/acs.jpclett.1c00826
    [94]
    SEMENOK D V, CHEN W H, HUANG X L, et al. Sr-doped superionic hydrogen glass: synthesis and properties of SrH22 [J]. Advanced Materials, 2022, 34(27): 2200924. doi: 10.1002/adma.202200924
    [95]
    BHATTACHARYYA P, CHEN W, HUANG X, et al. Imaging the meissner effect in hydride superconductors using quantum sensors [J]. Nature, 2024, 627(8002): 73–79.
    [96]
    XIE H, YAO Y S, FENG X L, et al. Hydrogen pentagraphenelike structure stabilized by hafnium: a high-temperature conventional superconductor [J]. Physical Review Letters, 2020, 125(21): 217001. doi: 10.1103/PhysRevLett.125.217001
    [97]
    SEMENOK D V, KVASHNIN A G, KRUGLOV I A, et al. Actinium hydrides AcH10, AcH12, and AcH16 as high-temperature conventional superconductors [J]. The Journal of Physical Chemistry Letters, 2018, 9(8): 1920–1926. doi: 10.1021/acs.jpclett.8b00615
    [98]
    HAI Y L, LU N, TIAN H L, et al. Cage structure and near room-temperature superconductivity in TbH n ( n = 1–12) [J]. The Journal of Physical Chemistry C, 2021, 125(6): 3640–3649. doi: 10.1021/acs.jpcc.1c00645
    [99]
    GE Y F, ZHANG F, YAO Y G. First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution [J]. Physical Review B, 2016, 93(22): 224513. doi: 10.1103/PhysRevB.93.224513
    [100]
    HOOPER J, TERPSTRA T, SHAMP A, et al. Composition and constitution of compressed strontium polyhydrides [J]. The Journal of Physical Chemistry C, 2014, 118(12): 6433–6447. doi: 10.1021/jp4125342
    [101]
    TANAKA K, TSE J S, LIU H. Electron-phonon coupling mechanisms for hydrogen-rich metals at high pressure [J]. Physical Review B, 2017, 96(10): 100502. doi: 10.1103/PhysRevB.96.100502
    [102]
    SZCZȨŚNIAK R, DURAJSKI A P. Superconductivity well above room temperature in compressed MgH6 [J]. Frontiers of Physics, 2016, 11(6): 117406. doi: 10.1007/s11467-016-0578-1
    [103]
    HEIL C, DI CATALDO S, BACHELET G B, et al. Superconductivity in sodalite-like yttrium hydride clathrates [J]. Physical Review B, 2019, 99(22): 220502. doi: 10.1103/PhysRevB.99.220502
    [104]
    LIU L L, PENG F, SONG P, et al. Generic rules for achieving room-temperature superconductivity in ternary hydrides with clathrate structures [J]. Physical Review B, 2023, 107(2): L020504. doi: 10.1103/PhysRevB.107.L020504
    [105]
    WANG H, YAO Y S, PENG F, et al. Quantum and classical proton diffusion in superconducting clathrate hydrides [J]. Physical Review Letters, 2021, 126(11): 117002. doi: 10.1103/PhysRevLett.126.117002
    [106]
    SUN Y, LV J, XIE Y, et al. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure [J]. Physical Review Letters, 2019, 123(9): 097001. doi: 10.1103/PhysRevLett.123.097001
    [107]
    SUKMAS W, TSUPPAYAKORN-AEK P, PINSOOK U, et al. Near-room-temperature superconductivity of Mg/Ca substituted metal hexahydride under pressure [J]. Journal of Alloys and Compounds, 2020, 849: 156434. doi: 10.1016/j.jallcom.2020.156434
    [108]
    ZHAO W D, DUAN D F, DU M Y, et al. Pressure-induced high- Tc superconductivity in the ternary clathrate system Y-Ca-H [J]. Physical Review B, 2022, 106(1): 014521. doi: 10.1103/PhysRevB.106.014521
    [109]
    DU M Y, SONG H, ZHANG Z H, et al. Room-temperature superconductivity in Yb/Lu substituted clathrate hexahydrides under moderate pressure [J]. Research, 2022: 9784309.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views(264) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return