Volume 38 Issue 1
Feb 2024
Turn off MathJax
Article Contents
ZHAO Chunfeng, ZHANG Li, LI Xiaojie. Damage Failure and Anti-Blast Performance of Concrete-Infilled Double Steel Corrugated-Plate Wall under Near Field Explosion[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014102. doi: 10.11858/gywlxb.20230727
Citation: ZHAO Chunfeng, ZHANG Li, LI Xiaojie. Damage Failure and Anti-Blast Performance of Concrete-Infilled Double Steel Corrugated-Plate Wall under Near Field Explosion[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014102. doi: 10.11858/gywlxb.20230727

Damage Failure and Anti-Blast Performance of Concrete-Infilled Double Steel Corrugated-Plate Wall under Near Field Explosion

doi: 10.11858/gywlxb.20230727
  • Received Date: 28 Aug 2023
  • Rev Recd Date: 13 Sep 2023
  • Available Online: 29 Jan 2024
  • Issue Publish Date: 05 Feb 2024
  • Compared with the traditional reinforced concrete and profiled double-skin composite wall (PDSCW), concrete-infilled double steel corrugated-plate wall (CDSCW) has better axial compressive capacity, lateral flexural stiffness, impact resistance and seismic performance, which has broad application prospect in ship and military field. In this paper, two types of CDSCW specimens were designed and produced. Firstly, the damage modes and dynamic responses of the two specimens were analyzed and compared through near-field explosion test. Secondly, the finite element model of CDSCW was established by using ANSYS/LS-DYNA software. The damage mechanism and explosion response of CDSCW and PDSCW under near-field explosion were studied, and the results were compared with the test results. Finally, effects of concrete thickness, steel plate thickness and charge quantity on the anti-blast performance of corrugated double steel plate composite wall board were analyzed. The results show that, compared with PDSCW, CDSCW with the same concrete and component size (length and width) have greater flexural rigidity, energy dissipation capacity, and better knock resistance performance under near field explosion. Increasing the corrugated depth can effectively improve the anti-blast performance of CDSCW, which provides reference for the design of anti-blast component and related engineering research.

     

  • loading
  • [1]
    ZINEDDIN M, KRAUTHAMMER T. Dynamic response and behavior of reinforced concrete slabs under impact loading [J]. International Journal of Impact Engineering, 2007, 34(9): 1517–1534. doi: 10.1016/j.ijimpeng.2006.10.012
    [2]
    WU J, LIU Z C, YU J, et al. Experimental and numerical investigation of normal reinforced concrete panel strengthened with polyurea under near-field explosion [J]. Journal of Building Engineering, 2022, 46: 103763. doi: 10.1016/j.jobe.2021.103763
    [3]
    李圣童, 汪维, 梁仕发, 等. 长持时爆炸冲击波荷载作用下梁板组合结构的动力响应 [J]. 爆炸与冲击, 2022, 42(7): 075103. doi: 10.11883/bzycj-2021-0495

    LI S T, WANG W, LIANG S F, et al. Dynamic response of beam-slab composite structures under long-lasting explosion shock wave load [J]. Explosion and Shock Waves, 2022, 42(7): 075103. doi: 10.11883/bzycj-2021-0495
    [4]
    方志强, 吕平, 张锐, 等. 抗爆型聚脲涂层的性能及其抗爆机理 [J]. 高压物理学报, 2022, 36(2): 024102. doi: 10.11858/gywlxb.20210840

    FANG Z Q, LV P, ZHANG R, et al. Blast-resistant properties and mechanism of anti-explosion polyurea coating [J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024102. doi: 10.11858/gywlxb.20210840
    [5]
    姜策, 肖李军, 宋卫东. 聚脲/铝分层复合结构的抗爆性能研究 [J]. 高压物理学报, 2023, 37(3): 034202. doi: 10.11858/gywlxb.20230610

    JIANG C, XIAO L J, SONG W D. Blast resistance of polyurea/aluminum composite structures [J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034202. doi: 10.11858/gywlxb.20230610
    [6]
    WANG Y H, SAH T P, LIU S T, et al. Experimental and numerical studies on novel stiffener-enhanced steel-concrete-steel sandwich panels subjected to impact loading [J]. Journal of Building Engineering, 2022, 45: 103479. doi: 10.1016/j.jobe.2021.103479
    [7]
    赵春风, 卢欣, 何凯城, 等. 单钢板混凝土剪力墙抗爆性能研究 [J]. 爆炸与冲击, 2020, 40(12): 121403. doi: 10.11883/bzycj-2020-0058

    ZHAO C F, LU X, HE K C, et al. Blast resistance property of concrete shear wall with single-side steel plate [J]. Explosion and Shock Waves, 2020, 40(12): 121403. doi: 10.11883/bzycj-2020-0058
    [8]
    赵春风, 何凯城, 卢欣, 等. 双钢板混凝土组合板抗爆性能分析 [J]. 爆炸与冲击, 2021, 41(9): 095102. doi: 10.11883/bzycj-2020-0291

    ZHAO C F, HE K C, LU X, et al. Analysis on the blast resistance of steel concrete composite slab [J]. Explosion and Shock Waves, 2021, 41(9): 095102. doi: 10.11883/bzycj-2020-0291
    [9]
    赵春风, 何凯城, 卢欣, 等. 弧形双钢板混凝土组合板抗爆性能数值研究 [J]. 爆炸与冲击, 2022, 42(2): 025101. doi: 10.11883/bzycj-2021-0205

    ZHAO C F, HE K C, LU X, et al. Numerical study of blast resistance of curved steel-concrete-steel composite slabs [J]. Explosion and Shock Waves, 2022, 42(2): 025101. doi: 10.11883/bzycj-2021-0205
    [10]
    CHEN W S, HAO H, DU H. Failure analysis of corrugated panel subjected to windborne debris impacts [J]. Engineering Failure Analysis, 2014, 44: 229–249. doi: 10.1016/j.engfailanal.2014.05.017
    [11]
    CHENG Y S, LIU M X, ZHANG P, et al. The effects of foam filling on the dynamic response of metallic corrugated core sandwich panel under air blast loading: experimental investigations [J]. International Journal of Mechanical Sciences, 2018, 145: 378–388. doi: 10.1016/j.ijmecsci.2018.07.030
    [12]
    WANG X, HE C, YUE Z S, et al. Shock resistance of elastomer-strengthened metallic corrugated core sandwich panels [J]. Composites Part B: Engineering, 2022, 237: 109840. doi: 10.1016/j.compositesb.2022.109840
    [13]
    ZHANG P, CHENG Y S, LIU J, et al. Experimental and numerical investigations on laser-welded corrugated-core sandwich panels subjected to air blast loading [J]. Marine Structures, 2015, 40: 225–246. doi: 10.1016/j.marstruc.2014.11.007
    [14]
    杨程风, 闫俊伯, 刘彦, 等. 接触爆炸载荷下波纹钢加固钢筋混凝土板毁伤特征分析 [J]. 北京理工大学学报, 2022, 42(5): 453–462. doi: 10.15918/j.tbit1001-0645.2021.108

    YANG C F, YAN J B, LIU Y, et al. Damage characteristics of corrugated steel concrete slab under contact explosion load [J]. Transactions of Beijing Institute of Technology, 2022, 42(5): 453–462. doi: 10.15918/j.tbit1001-0645.2021.108
    [15]
    LU J Y, WANG Y H, ZHAI X M. Response of flat steel-concrete-corrugated steel sandwich panel under drop-weight impact load by a hemi-spherical head [J]. Journal of Building Engineering, 2021, 44: 102890. doi: 10.1016/J.JOBE.2021.102890
    [16]
    YAZICI M, WRIGHT J, BERTIN D, et al. Experimental and numerical study of foam filled corrugated core steel sandwich structures subjected to blast loading [J]. Composite Structures, 2014, 110: 98–109. doi: 10.1016/j.compstruct.2013.11.016
    [17]
    AHMED S, GALAL K. Response of metallic sandwich panels to blast loads [J]. Journal of Structural Engineering, 2019, 145(12): 04019145. doi: 10.1061/(ASCE)ST.1943-541X.0002397
    [18]
    WANG M Z, GUO Y L, ZHU J S, et al. Sectional strength design of concrete-infilled double steel corrugated-plate walls with T-section [J]. Journal of Constructional Steel Research, 2019, 160: 23–44. doi: 10.1016/j.jcsr.2019.05.017
    [19]
    WANG M Z, GUO Y L, ZHU J S, et al. Flexural buckling of axially loaded concrete-infilled double steel corrugated-plate walls with T-section [J]. Journal of Constructional Steel Research, 2020, 166: 105940. doi: 10.1016/j.jcsr.2020.105940
    [20]
    中华人民共和国住房和城乡建设部. 钢板剪力墙技术规程: JGJ/T 380—2015 [S]. 北京: 中国建筑工业出版社, 2016.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for steel plate shear walls: JGJ/T 380—2015 [S]. Beijing: China Architecture & Building Press, 2016.
    [21]
    李忠献, 师燕超, 史祥生. 爆炸荷载作用下钢筋混凝土板破坏评定方法 [J]. 建筑结构学报, 2009, 30(6): 60–66. doi: 10.14006/j.jzjgxb.2009.06.008

    LI Z X, SHI Y C, SHI X S. Damage analysis and assessment of RC slabs under blast load [J]. Journal of Building Structures, 2009, 30(6): 60–66. doi: 10.14006/j.jzjgxb.2009.06.008
    [22]
    WANG Y H, LIEW J Y R, LEE S C. Theoretical models for axially restrained steel-concrete-steel sandwich panels under blast loading [J]. International Journal of Impact Engineering, 2015, 76: 221–231. doi: 10.1016/j.ijimpeng.2014.10.005
    [23]
    武海军, 黄风雷, 张庆明, 等. ALE方法在钢筋混凝土侵彻数值模拟中的应用 [J]. 北京理工大学学报, 2002, 11(4): 405–408.

    WU H J, HUANG F L, ZHANG Q M, et al. Application of ALE method on the numerical simulation of reinforced concrete penetration [J]. Journal of Beijing Institute of Technology, 2002, 11(4): 405–408.
    [24]
    XIANG X M, LU G, MA G W, et al. Blast response of sandwich beams with thin-walled tubes as core [J]. Engineering Structures, 2016, 127: 40–48. doi: 10.1016/j.engstruct.2016.08.034
    [25]
    ZHANG X, DING Y, SHI Y C. Numerical simulation of far-field blast loads arising from large TNT equivalent explosives [J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104432. doi: 10.1016/j.jlp.2021.104432
    [26]
    XIAO W F, ANDRAE M, STEYERER M, et al. Investigations of blast loads on a two-storied building with a gable roof: full-scale experiments and numerical study [J]. Journal of Building Engineering, 2021, 43: 103111. doi: 10.1016/j.jobe.2021.103111
    [27]
    XIAO Y, ZHU W Q, WU W C, et al. Damage modes and mechanism of RC arch slab under contact explosion at different locations [J]. International Journal of Impact Engineering, 2022, 170: 104360. doi: 10.1016/j.ijimpeng.2022.104360
    [28]
    WANG W, HUO Q, YANG J C, et al. Damage analysis of POZD coated square reinforced concrete slab under contact blast [J]. Defence Technology, 2022, 18(9): 1715–1726. doi: 10.1016/j.dt.2021.07.005
    [29]
    LIEW J Y R, WANG T Y. Novel steel-concrete-steel sandwich composite plates subject to impact and blast load [J]. Advances in Structural Engineering, 2011, 14(4): 673–687. doi: 10.1260/1369-4332.14.4.673
    [30]
    XU K, LU Y. Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading [J]. Computers & Structures, 2006, 84(5/6): 431–438. doi: 10.1016/j.compstruc.2005.09.029
    [31]
    HONG J, FANG Q, CHEN L, et al. Numerical predictions of concrete slabs under contact explosion by modified K&C material model [J]. Construction and Building Materials, 2017, 155: 1013–1024. doi: 10.1016/j.conbuildmat.2017.08.060
    [32]
    LI M H, XIA M T, ZONG Z H, et al. Residual axial capacity of concrete-filled double-skin steel tube columns under close-in blast loading [J]. Journal of Constructional Steel Research, 2023, 201: 107697. doi: 10.1016/j.jcsr.2022.107697
    [33]
    YU J, LIANG S L, REN Z P, et al. Structural behavior of steel-concrete-steel and steel-ultra-high-performance-concrete-steel composite panels subjected to near-field blast load [J]. Journal of Constructional Steel Research, 2023, 210: 108108. doi: 10.1016/j.jcsr.2023.108108
    [34]
    HENRYCH J. 爆炸动力学及其应用 [M]. 熊建国, 译. 北京: 科学出版社, 1987: 127.

    HENRYCH J. The dynamics of explosion and its use [M]. Translated by XIONG J G. Beijing: Science Press, 1987: 127.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(27)  / Tables(2)

    Article Metrics

    Article views(129) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return