Volume 37 Issue 6
Dec 2023
Turn off MathJax
Article Contents
WU Xuyang, LI Hongchao, LIU Xuanze, ZHANG Ji, LIANG Rui, WANG Fuqi. Fuzzy Decision Theory of Rock Mass Explodability and Prediction of Explosive Unit Consumption[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 065303. doi: 10.11858/gywlxb.20230700
Citation: WU Xuyang, LI Hongchao, LIU Xuanze, ZHANG Ji, LIANG Rui, WANG Fuqi. Fuzzy Decision Theory of Rock Mass Explodability and Prediction of Explosive Unit Consumption[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 065303. doi: 10.11858/gywlxb.20230700

Fuzzy Decision Theory of Rock Mass Explodability and Prediction of Explosive Unit Consumption

doi: 10.11858/gywlxb.20230700
  • Received Date: 03 Aug 2023
  • Rev Recd Date: 31 Aug 2023
  • Available Online: 11 Dec 2023
  • Issue Publish Date: 15 Dec 2023
  • In order to promote the further practical application of rock mass explosivity classification in engineering, regression analysis method was used to analyze the correlation of explosivity indicators, and finally determine the four basically unrelated parameters of rock mass tensile strength, density, brittleness index, and integrity coefficient as rating indicators. The sensitivity of each rating index and its weight were determined using orthogonal design experiments. By using the method of fuzzy decision-making, the explosivity of rock mass was rated, and based on the rating index and the basic quality index of rock mass, a formula for predicting the explosive unit consumption of shallow hole blasting in underground mining was derived. The corresponding explosive unit consumption prediction interval for the explosivity level was further derived. This research shows that the fuzzy decision-making method provides a new approach for rock mass explosivity rating, and also proves the correctness of weight allocation and rating index selection. The on-site blasting test has proven the rationality of the predicted range of explosive unit consumption, which can provide certain guiding significance for production blasting and similar engineering practices.

     

  • loading
  • [1]
    坦加耶夫 И А. 岩石的可钻性和可爆性 [M]. 王伟德, 周树良,译. 北京: 冶金工业出版社, 1987: 55–113.

    TANGAYEV И А. Drillability and explosive of rock [M]. Translated by WANG W D, ZHOU S L. Beijing: Metallurgical Industry Press, 1987: 55–113.
    [2]
    张强. 岩体爆破性分级研究进展 [J]. 工程爆破, 1998, (3): 75–79,35.

    ZHANG Q. Advance in study on rock blastability classification [J]. Engineering Blasting, 1998, (3): 75–79,35.
    [3]
    XIAO S S, LI K M, DING X H, et al. Rock mass blastability classification using fuzzy pattern recognition and the combination weight method [J]. Mathematical Problems in Engineering, 2015, 12: 724619.
    [4]
    OZGUR Y. Rock factor prediction in the Kuz-Ram model and burden estimation by mean fragment size [J]. Geomechanics for Energy and the Environment, 2023, 33: 100415. doi: 10.1016/j.gete.2022.100415
    [5]
    张紫晗, 胡光球, 郑建礼, 等. 基于脆性指数和熵权理论的岩体可爆性分级方法 [J]. 工程爆破, 2021, 27(5): 65–71.

    ZHANG Z H, HU G Q, ZHENG J L, et al. Rock blastability classification method based on brittleness index and entropy weight theory [J]. Engineering Blasting, 2021, 27(5): 65–71.
    [6]
    史涵虚, 周传波, 蒋楠, 等. 魏家峁煤矿区深孔台阶剥离爆破施工岩体可爆性分析 [J]. 爆破, 2023, 40(1): 37–44.

    SHI H X, ZHOU C B, JIANG N, et al. Analysis on rock mass explosibility during deep-hole bench stripping by blasting in Weijiamao coal mine area [J]. Blasting, 2023, 40(1): 37–44.
    [7]
    王文军, 李润然, 纪旭波, 等. 黑沟矿区露天开采矿岩可爆性分级研究 [J]. 金属矿山, 2021(4): 64–69.

    WANG W J, LI R R, JI X B, et al. Blastability classification of open pit mining in heigou mining area [J]. Metal Mine, 2021(4): 64–69.
    [8]
    WU S L, YANG S, WANG Q Y. Classification of open pit iron mine rock mass blastability based on concept lattice and rough set [J]. Geotechnical and Geological Engineering: An International Journal, 2020, 38(1): 449–458. doi: 10.1007/s10706-019-01036-3
    [9]
    ZHOU T, HU H J, KUANG Y, et al. Improved rock engineering system (RES)-multidimensional cloud evaluation model and its application to the rock mass blastability [J]. IEEE Access, 2019, 7: 100305. doi: 10.1109/ACCESS.2019.2930629
    [10]
    ALIPOUR A, MOKHARIAN M, CHEHREGHANI S. An application of fuzzy sets to the blastability index (BI) used in rock engineering [J]. Periodica Polytechnica Civil Engineering, 2018, 62(3): 580–589.
    [11]
    冯夏庭. 岩石可爆性神经网络研究 [J]. 爆炸与冲击, 1994, 14(4): 298–306.

    FENG X T. A study on neural network on rock blastability [J]. Explosion and Shock Waves, 1994, 14 (4): 298–306.
    [12]
    马红贝, 赵国彦, 路凡. 岩体可爆性分级评价的集对分析模型 [J]. 爆破, 2016, 33(2): 28–31, 38.

    MA H B, ZHAO G Y, LU F. Set pair analysis model for rock blastability classification estimation [J]. Blasting, 2016, 33(2): 28–31, 38.
    [13]
    白玉奇, 李振阳, 李传增, 等. 基于CRITIC-Vague模型的岩体可爆性评价 [J]. 金属矿山, 2020(12): 27–32.

    BAI Y Q, LI Z Y, LI C Z, et al. Assessment for rock mass blastability based on CRITIC-Vague model [J]. Metal Mine, 2020(12): 27–32.
    [14]
    丁小华, 原文杰, 解祯, 等. 基于综合赋权云模型的露天矿岩体可爆性分级识别 [J]. 煤炭科学技术, 2019, 47(10): 96–101.

    DING X H, YUAN W J, XIE Z, et al. Classification and identification of rock blastability in open-pit mine based on comprehensive weighted cloud model [J]. Coal Science and Technology, 2019, 47(10): 96–101.
    [15]
    刘恩龙, 沈珠江. 岩土材料的脆性研究 [J]. 岩石力学与工程学报, 2005, 24(19): 51–55.

    LIU E L, SHEN Z J. Study on brittleness of geomaterials [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 51–55.
    [16]
    璩世杰, 辛明印, 毛市龙, 等. 岩体可爆性指标的相关性分析 [J]. 岩石力学与工程学报, 2005, 24(3): 468–473.

    QU S J, XIN M Y, MAO S L, et al. Correlation analyses of blastability indexes for rock mass [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(3): 468–473.
    [17]
    潘勇, 杨天祥. 岩体可爆性分级的神经网络判别方法 [J]. 现代矿业, 2013, 29(1): 21–23.

    PAN Y, YANG T X. Neural network discriminant method of rock blasting classification [J]. Modern Mining, 2013, 29(1): 21–23.
    [18]
    璩世杰, 齐宝军, 许文耀, 等. 水厂铁矿岩体可爆性分级方法与应用 [J]. 金属矿山, 2009, 39(11): 25–27, 178.

    QU S J, QI B J, XU W Y, et al. Rock mass blastability classification and its application in shuichang open pit mine [J]. Metal Mine, 2009, 39(11): 25–27, 178.
    [19]
    张德明, 王新民, 郑晶晶, 等. 基于模糊综合评判的矿岩体可爆性分级 [J]. 爆破, 2010, 27(4): 43–47.

    ZHANG D M, WANG X M, ZHENG J J, et al. Blastability classification of rock and mine based on fuzzy comprehensive evaluation [J]. Blasting, 2010, 27(4): 43–47.
    [20]
    高成宇. 巴鲁巴铜矿基于加权聚类分析的岩体可爆性分级 [J]. 铜业工程, 2014(2): 28–31.

    GAO C Y. Rock-mass blastability classification of baluba copper mine based on weighted clustering analysis [J]. Copper Engineering, 2014(2): 28–31.
    [21]
    李蓉, 宋娟, 何永延. 基于属性识别理论的岩体可爆性分级方法 [J]. 金属矿山, 2008, 38(5): 32–34,48.

    LI R, SONG J, HE Y Y. Classification for rockmass blastability based on attribute recognition theory [J]. Metal Mine, 2008, 38(5): 32–34,48.
    [22]
    汪旭光. 爆炸设计与施工 [M]. 第2版. 北京: 冶金工业出版社, 2011: 303–305.

    WANG X G. Explosion design and construction [M]. 2nd ed. Beijing: Metallurgical Industry Press, 2011: 303–305.
    [23]
    长江水利委员会长江科学院. 工程岩体分级标准: GB/T 50218—2014 [S]. 北京: 中国计划出版社, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(14)

    Article Metrics

    Article views(127) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return