ZHANG Gongzhen, HE Zhiwei, RAN Xianwen, CHENG Wei, WANG Yangwen, LI Zhiyuan, ZHANG He. Preparation, Characterization and Thermal Decomposition Properties of ANPyO@PDA Composites[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 063402. doi: 10.11858/gywlxb.20230697
Citation: ZHANG Gongzhen, HE Zhiwei, RAN Xianwen, CHENG Wei, WANG Yangwen, LI Zhiyuan, ZHANG He. Preparation, Characterization and Thermal Decomposition Properties of ANPyO@PDA Composites[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 063402. doi: 10.11858/gywlxb.20230697

Preparation, Characterization and Thermal Decomposition Properties of ANPyO@PDA Composites

doi: 10.11858/gywlxb.20230697
  • Received Date: 26 Jul 2023
  • Rev Recd Date: 09 Aug 2023
  • Available Online: 12 Dec 2023
  • Issue Publish Date: 15 Dec 2023
  • In order to improve the thermal stability of 2,6-diamino-3,5-dinitropyridine-1-oxide (ANPyO), polydopamine was coated on the surface of ANPyO crystal by in situ polymerization, based on the principle of dopamine oxidation self-polymerization. ANPyO@PDA core-shell composite materials with different coating rates were prepared by adjusting the reaction time. The morphology, crystal structure, molecular structure, and element content of ANPyO@PDA composites were characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS). The thermal decomposition performance of the ANPyO@PDA composites was also tested by thermogravimetry-differential scanning calorimetry (TG-DSC). The results show that PDA formed uniform and compact coating on the surface of the ANPyO, and the crystal and molecular structures of the ANPyO remained unchanged after the PDA coating. Additionally, the coating rate gradually increased with the growth of coating time. The thermal decomposition peak temperatures of the ANPyO were increased by 1.97 and 1.95 °C, respectively, as well as the apparent activation energy increased by 25.04 and 139.33 kJ/mol, and the critical temperatures of the thermal explosion were increased by 23.12 and 20.04 ℃ after PDA coating for 3 and 9 h, respectively. The thermal stability and thermal safety of the ANPyO@PDA composites are higher than that of the ANPyO.

     

  • [1]
    李陈, 马凤国, 睢贺良, 等. 含能材料热分解动力学求解及热安全性理论评估的进展 [J]. 含能材料, 2020, 28(8): 798–809.

    LI C, MA F G, SUI H L, et al. Review on thermal decomposition kinetics and theoretical evaluation method for thermal safety of energetic materials [J]. Chinese Journal of Energetic Materials, 2020, 28(8): 798–809.
    [2]
    RITTER H, LICHT H H. Synthesis and reactions of dinitrated amino and diaminopyridines [J]. Journal of Heterocyclic Chemistry, 1995, 32(2): 585–590. doi: 10.1002/jhet.5570320236
    [3]
    成健, 姚其正, 周新利, 等. 2,6-二氨基-3,5-二硝基吡啶-1-氧化物的合成与性能 [J]. 含能材料, 2008, 16(6): 672–675.

    CHENG J, YAO Q Z, ZHOU X L, et al. Synthesis and properties of 2,6-diamino-3,5-dinitropyridine-1-oxide [J]. Chinese Journal of Energetic Materials, 2008, 16(6): 672–675.
    [4]
    何志伟. 多氨基多硝基吡啶氮氧化物及其配方的性能研究 [D]. 南京: 南京理工大学, 2010: 24–25.

    HE Z W. Research on performance of polyamino and polynitro derivatives of pyridine and their N-oxides and formulations [D]. Nanjing: Nanjing University of Science & Technology, 2010: 24–25.
    [5]
    何志伟, 颜事龙, 刘祖亮. 2,6-二氨基-3,5-二硝基吡啶-1-氧化物的热分解特性 [J]. 火炸药学报, 2013, 36(6): 51–54, 85.

    HE Z W, YAN S L, LIU Z L. Thermal decomposition characteristics of 2,6-diamino-3,5-dinitropyridine-1-oxide [J]. Chinese Journal of Explosives & Propellants, 2013, 36(6): 51–54, 85.
    [6]
    何志伟, 高大元, 刘祖亮. 2,6-二氨基-3,5-二硝基吡啶-1-氧化物及其黏结炸药的热分解动力学 [J]. 火炸药学报, 2009, 32(2): 32–36.

    HE Z W, GAO D Y, LIU Z L. Thermal decomposition kinetics of 2,6-diamino-3,5-dinitropyridine-1-oxide and its formulation explosives [J]. Chinese Journal of Explosives & Propellants, 2009, 32(2): 32–36.
    [7]
    LIU J J, LIU Z L, CHENG J, et al. Synthesis, crystal structure and properties of energetic complexes constructed from transition metal cations (Fe and Co) and ANPyO [J]. RSC Advances, 2013, 3(9): 2917–2923. doi: 10.1039/c2ra22839d
    [8]
    张蓉仙, 钟笑笙, 陆小刚, 等. ANPyO Bi(Ⅲ)含能配合物的合成、表征、热分解行为及其对高氯酸铵热分解的催化作用 [J]. 固体火箭技术, 2017, 40(4): 448–455.

    ZHANG R X, ZHONG X S, LU X G, et al. Synthesis, characterization and catalytic effect on thermal decomposition of AP: an eco-friendly energetic Bi (Ⅲ) complex of ANPyO [J]. Journal of Solid Rocket Tchnology, 2017, 40(4): 448–455.
    [9]
    何志伟, 高大元, 方东, 等. 包覆对新型炸药2,6-二氨基-3,5-二硝基吡啶-1-氧化物某些性能的影响 [J]. 含能材料, 2009, 17(3): 299–303.

    HE Z W, GAO D Y, FANG D, et al. Effect of coating on some properties of a new explosive 2,6-diamino-3,5-dinitropyridine-1-oxide [J]. Chinese Journal of Explosives & Propellants, 2009, 17(3): 299–303.
    [10]
    何志伟, 汪扬文, 王洋, 等. 氟橡胶包覆ANPyO造型粉的热安全性研究 [J]. 爆破器材, 2021, 50(2): 24–28.

    HE Z W, WANG Y W, WANG Y, et al. Thermal safety of ANPyO coated with fluorine rubber [J]. Explosive Materials, 2021, 50(2): 24–28.
    [11]
    王洋, 何志伟, 郭子如, 等. ANPyO/NBR的热分解动力学及热安全性研究 [J]. 中国安全科学学报, 2019, 29(5): 62–66.

    WANG Y, HE Z W, GUO Z R, et al. Thermal decomposition kinetics and thermal safety of ANPyO/NBR [J]. China Safety Science Journal, 2019, 29(5): 62–66.
    [12]
    YANG Z J, DING L, WU P, et al. Fabrication of RDX, HMX and CL-20 based microcapsules via in situ polymerization of melamine-formaldehyde resins with reduced sensitivity [J]. Chemical Engineering Journal, 2015, 268: 60–66. doi: 10.1016/j.cej.2015.01.024
    [13]
    LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings [J]. Science, 2007, 318(5849): 426–430. doi: 10.1126/science.1147241
    [14]
    GONG F Y, ZHANG J H, DING L, et al. Mussel-inspired coating of energetic crystals: a compact core-shell structure with highly enhanced thermal stability [J]. Chemical Engineering Journal, 2017, 309: 140–150. doi: 10.1016/j.cej.2016.10.020
    [15]
    YU Q, ZHAO C, ZHU Q, et al. Influence of polydopamine coating on the thermal stability of 2,6-diamino-3,5-dinitropyrazine-1-oxide explosive under different heating conditions [J]. Thermochimica Acta, 2020, 686: 178530. doi: 10.1016/j.tca.2020.178530
    [16]
    祝青, 吴束力, 肖春, 等. 仿生聚多巴胺对HMX、TATB和铝粉的界面性能改性 [J]. 含能材料, 2019, 27(11): 949–954.

    ZHU Q, WU S L, XIAO C, et al. Bioinspired improving interfacial performances of HMX, TATB and aluminum powders with polydopamine coating [J]. Chinese Journal of Energetic Materials, 2019, 27(11): 949–954.
    [17]
    杨学林, 曾诚成, 巩飞艳, 等. 聚多巴胺改性的CL-20和FOX-7炸药力学性能及热稳定性 [J]. 含能材料, 2021, 29(11): 1049–1060.

    YANG X L, ZENG C C, GONG F Y, et al. Mechanical properties and thermal stabilities of CL-20 and FOX-7 explosives modified by polydopamine [J]. Chinese Journal of Energetic Materials, 2021, 29(11): 1049–1060.
    [18]
    CHEN L, LI Q, LIU S, et al. Bio-inspired synthesis of energetic microcapsules core-shell structured with improved thermal stability and reduced sensitivity via in situ polymerization for application potential in propellants [J]. Advanced Materials Interfaces, 2021, 8(23): 2101248. doi: 10.1002/admi.202101248
    [19]
    周心龙, 刘祖亮, 成健, 等. 超细ANPyO/HMX混晶炸药的制备与性能 [J]. 火炸药学报, 2014, 37(5): 47–51.

    ZHOU X L, LIU Z L, CHENG J, et al. Preparation and properties of superfine ANPyO/HMX mischcrystal explosive [J]. Chinese Journal of Explosives & Propellants, 2014, 37(5): 47–51.
    [20]
    ZANGMEISTER R A, MORRIS T A, TARLOV M J. Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine [J]. Langmuir, 2013, 29(27): 8619–8628. doi: 10.1021/la400587j
    [21]
    肖立柏, 高红旭, 赵凤起, 等. 3,3’-二硝氨基-4,4’-氧化偶氮呋咱羟胺盐的热行为和热安全性研究 [J]. 火炸药学报, 2020, 43(1): 24–27, 32.

    XIAO L B, GAO H X, ZHAO F Q, et al. Thermal behavior and safety of dihydroxylammonium 3,3’-dinitroamino-4,4’-azoxyfurazanate [J]. Chinese Journal of Explosives & Propellants, 2020, 43(1): 24–27, 32.
    [22]
    汤崭, 杨利, 乔小晶, 等. HMX热分解动力学与热安全性研究 [J]. 含能材料, 2011, 19(4): 396–400.

    TANG Z, YANG L, QIAO X J, et al. Study on thermal decomposition kinetics and thermal safety of HMX [J]. Chinese Journal of Energetic Materials, 2011, 19(4): 396–400.
  • Relative Articles

    [1]WANG Yufeng, HAO Long, WU Fengchao, GENG Huayun, LI Jun. Structural Stability and Shock Decomposition of UH3 at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030108. doi: 10.11858/gywlxb.20240709
    [2]JIANG Changguo, TAN Dayong, XIE Yafei, LUO Xingli, XIAO Wansheng. Investigation on Structural Stability of γ-Al(OH)3 under High Pressure and Shear Stress[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011202. doi: 10.11858/gywlxb.20210766
    [3]LIU Runze, WANG Xinjie, LIU Ruifeng, DUAN Zhuoping, HUANG Fenglei. Cook-off Test and Numerical Simulation of HMX-Based Cast Explosive Containing AP[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055202. doi: 10.11858/gywlxb.20220538
    [4]WEN Xinzhu, PENG Yuyan, LIU Mingzhen. First-Principles Study on Structural Stability of Perovskite ZrBeO3[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011202. doi: 10.11858/gywlxb.20190802
    [5]LI Xiaoyang, LU Yang, YAN Hao. Electrical Transport Properties of Hexagonal TaSi2 Crystals Based on Structural Stability under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 021102. doi: 10.11858/gywlxb.20170571
    [6]ZHANG Yilong, CUI Man'ai, LIU Yanhui. Crystal Structure and Stability of LiAlH4 from First Principles[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 021103. doi: 10.11858/gywlxb.20170561
    [7]AN Pei, KOU Zi-Li, LI Zi-Yang, QIN Jia-Qian. Study on Thermal Stability of Ti2AlN-Al at High Pressure[J]. Chinese Journal of High Pressure Physics, 2010, 24(1): 71-75 . doi: 10.11858/gywlxb.2010.01.013
    [8]LUO Ning, LI Xiao-Jie, YAN Hong-Hao, WANG Xiao-Hong, WANG Li-He. Detonation Synthesis of Carbon Encapsulated Cobalt/Nickel Nanoparticles[J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 415-420 . doi: 10.11858/gywlxb.2009.06.003
    [9]WANG Tao, BAI Jing-Song, LI Ping. Two-Dimensional Numerical Simulation of Gas/Liquid Interface Instability[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 298-304 . doi: 10.11858/gywlxb.2008.03.013
    [10]LIU Qing-Qing, WANG Fu-Ren, LI Feng-Ying, CHEN Liang-Chen, YU Ri-Cheng, JIN Chang-Qing, LI Yan-Chun, LIU Jing. The High Pressure Synthesis and Situ High Pressure Structural Stability of Ba2CuO2Cl2[J]. Chinese Journal of High Pressure Physics, 2008, 22(1): 95-98 . doi: 10.11858/gywlxb.2008.01.020
    [11]WANG Mei, LI He-Sheng, LI Mu-Sen, GONG Jian-Hong, TIAN Bin. Effect of Boron Contained in the Catalyst on Thermal Stability of Boron-Doped Diamond Single Crystals[J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 215-219 . doi: 10.11858/gywlxb.2008.02.017
    [12]LI Jian-Ru, YANG Liu-Xiang, LI Jie, YU Ri-Cheng, LI Feng-Ying, BAO Zhong-Xing, LIU Jing, JIN Chang-Qing. Structural Stability and Electrical Properties of CMR Material Sr2CrWO6 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 381-384 . doi: 10.11858/gywlxb.2005.04.018
    [13]ZHANG Jiang-Shan, E Bei, YU Ri-Cheng, LI Feng-Ying, LI Xiao-Dong, LI Yan-Chun, MA Mai-Ning, LIU Jing, LIU Zhen-Xing, BAO Zhong-Xing, et al.. The Structural Stability and Electrical Properties of Nanometer-Scale Sr2FeMoO6 Polycrystals under High Pressure[J]. Chinese Journal of High Pressure Physics, 2004, 18(3): 193-197 . doi: 10.11858/gywlxb.2004.03.001
    [14]ZHAO Xu, YU Ri-Cheng, LI Feng-Ying, LIU Zhen-Xing, BAO Zhong-Xing, TANG Gui-De, LIU Jing, JIN Chang-Qing. Electrical Properties and Structural Stability of Sr2FeMoxNb1-xO6 (x=0, 0.3) under High Pressure[J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 301-304 . doi: 10.11858/gywlxb.2003.04.010
    [15]ZHANG Ming, HE Duan-Wei, ZHANG Xiang-Yi, XU Ying-Fan, WANG Wen-Kui, LIANG Ji, WEI Bing-Qing, WU De-Hai. Study on Thermal Stability of Nanotubes under High Pressure[J]. Chinese Journal of High Pressure Physics, 1998, 12(1): 17-21 . doi: 10.11858/gywlxb.1998.01.003
    [16]LI Peng-Yuan, GENG Man, TIE Jun, HUANG Pei-Ji, CUI Xi-Rong, YAN Bing, WANG Jing-Quan, JIANG Yuan-Qi. A Study of the Heat Resistance of N+ Implanted Synthetic Diamond[J]. Chinese Journal of High Pressure Physics, 1997, 11(4): 303-306 . doi: 10.11858/gywlxb.1997.04.012
    [17]ZHAO Ting-He, YAN Xue-Wei, CUI Shuo-Jing, CHEN Jiu-Hua, LIU Li-Jun, NIU Wei, ZHAO Wei. Synthesis of Jadeite Jewel and Its Thermal Behavior and Stability[J]. Chinese Journal of High Pressure Physics, 1992, 6(4): 291-296 . doi: 10.11858/gywlxb.1992.04.008
    [18]YU Hong-Chang, LI Shang-Jie. The Effects of the Type and Amount of the Grain Boundary Phase in s-Type Polycrystalline Diamond on Its Physical Properties[J]. Chinese Journal of High Pressure Physics, 1989, 3(3): 221-225 . doi: 10.11858/gywlxb.1989.03.007
    [19]LI Qiang-Min, SU Wen-Hui, LONG Xiang, WU Dai-Ming, GAO Zhong-Min. High-Pressure and Temperature Syntheses and Structural Stability Studies of Some Rare-Earth Oxides[J]. Chinese Journal of High Pressure Physics, 1989, 3(1): 42-50 . doi: 10.11858/gywlxb.1989.01.006
    [20]SHEN Zhong-Yi, CHEN Gui-Yu, ZHANG Yun, YIN Xiu-Jun, SHEN De-Jiu, WU Hao-Quan. The Thermal Stability and Variation of Precipitated Phase in Amorphous Zr70Cu30 Alloy at High Pressure[J]. Chinese Journal of High Pressure Physics, 1987, 1(2): 165-172 . doi: 10.11858/gywlxb.1987.02.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views(550) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return