Citation: | DU Mingran, CHEN Yuhang, LU Shaofeng, LIANG Jin, LI Jirui, WANG Yinjun, WANG Tianzhao, CHEN Zhifan. Bubble Curtain Clipping Characteristics Based on Orthogonal Test Method[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 065302. doi: 10.11858/gywlxb.20230684 |
[1] |
高明涛, 李昕, 周晶. 水下钻孔爆破水中冲击波的数值模拟研究 [J]. 水电能源科学, 2009, 27(4): 138–141. doi: 10.3969/j.issn.1000-7709.2009.04.043
GAO M T, LI X, ZHOU J. Numerical simulation of shock wave in water of underwater drilling blasting [J]. Water Resources and Power, 2009, 27(4): 138–141. doi: 10.3969/j.issn.1000-7709.2009.04.043
|
[2] |
杨建, 刘静, 张登泰, 等. 气泡帷幕对港口水域爆破波的削弱 [J]. 中国水运, 2020, 20(10): 90–92.
YANG J, LIU J, ZHANG D T, et al. Weakening of blast waves in port waters by air bubble curtains [J]. China Water Transport, 2020, 20(10): 90–92.
|
[3] |
司剑峰. 深水钻孔爆破的冲击波衰减规律及防护研究 [D]. 武汉: 武汉科技大学, 2021.
SI J F. Research on attenuation law of shock wave and protection in deep-water drilling and blasting [D]. Wuhan: Wuhan University of Science and Technology, 2021.
|
[4] |
俞统昌, 王晓峰, 王建灵. 炸药的水下爆炸冲击波性能 [J]. 含能材料, 2003, 11(4): 182–186. doi: 10.3969/j.issn.1006-9941.2003.04.002
YU T C, WANG X F, WANG J L. Underwater shockwave performance of explosives [J]. Energetic Materials, 2003, 11(4): 182–186. doi: 10.3969/j.issn.1006-9941.2003.04.002
|
[5] |
伍俊, 杨益, 庄铁栓. 水中爆炸作用机理及毁伤效应研究综述 [J]. 火炸药学报, 2016, 39(1): 1–13. doi: 10.14077/j.issn.1007-7812.2016.01.001
WU J, YANG Y, ZHUANG T S. A review of research on action mechanism and damage effect of underwater explosion [J]. Chinese Journal of Explosives & Propellants, 2016, 39(1): 1–13. doi: 10.14077/j.issn.1007-7812.2016.01.001
|
[6] |
陈岩武, 孙远翔, 王成. 水下爆炸载荷下舰船双层底部结构的毁伤特性 [J]. 兵工学报, 2023, 44(3): 670–681. doi: 10.12382/bgxb.2022.0390
CHEN Y W, SUN Y X, WANG C. Damage characteristics of ship’s double bottom structure subjected to underwater explosion [J]. Acta Armamentarii, 2023, 44(3): 670–681. doi: 10.12382/bgxb.2022.0390
|
[7] |
赵为, 梁作民, 郭成喜. 水下近场爆破安全控制 [J]. 水运工程, 2007, 33(9): 159–164. doi: 10.3969/j.issn.1002-4972.2007.09.038
ZHAO W, LIANG Z M, GUO C X. Safety control of underwater near-site explosion [J]. Port & Waterway Engineering, 2007, 33(9): 159–164. doi: 10.3969/j.issn.1002-4972.2007.09.038
|
[8] |
张轶凡, 刘亮涛, 王金相, 等. 水下爆炸冲击波和气泡载荷对典型圆柱壳结构的毁伤特性 [J]. 兵工学报, 2023, 44(2): 345–359. doi: 10.12382/bgxb.2021.0598
ZHANG Y F, LIU L T, WANG J X, et al. Damage characteristics of underwater explosion shock wave and bubble load on typical cylindrical shell structure [J]. Acta Armamentarii, 2023, 44(2): 345–359. doi: 10.12382/bgxb.2021.0598
|
[9] |
王高辉, 高政, 卢文波, 等. 考虑初始应力的混凝土重力坝水下爆炸毁伤特性研究 [J]. 振动与冲击, 2022, 41(11): 133–140. doi: 10.13465/j.cnki.jvs.2022.11.017
WANG G H, GAO Z, LU W B, et al. Damage characteristics of underwater explosion of concrete gravity dam considering initial stress [J]. Journal of Vibration and Shock, 2022, 41(11): 133–140. doi: 10.13465/j.cnki.jvs.2022.11.017
|
[10] |
张志波, 李春军, 李红勇, 等. 气泡帷幕在水下爆破减震工程中的应用 [J]. 爆破, 2003, 20(2): 75–76, 89. doi: 10.3963/j.issn.1001-487X.2003.02.028
ZHANG Z B, LI C J, LI H Y, et al. Application of air bubble purdah in the damping measure in the underwater blasting [J]. Blasting, 2003, 20(2): 75–76, 89. doi: 10.3963/j.issn.1001-487X.2003.02.028
|
[11] |
刘欣, 顾文彬, 陈学平. 气泡帷幕对水中冲击波衰减特性的数值模拟研究 [J]. 爆破, 2015, 32(3): 79–84. doi: 10.3963/j.issn.1001-487X.2015.03.014
LIU X, GU W B, CHEN X P. Numerical simulation study of attenuation characteristics of water shock wave under bubble curtain [J]. Blasting, 2015, 32(3): 79–84. doi: 10.3963/j.issn.1001-487X.2015.03.014
|
[12] |
胡伟才, 吴立, 舒利, 等. 不同设置方式下气泡帷幕对水中冲击波衰减特性的影响 [J]. 科学技术与工程, 2018, 18(17): 33–38. doi: 10.3969/j.issn.1671-1815.2018.17.006
HU W C, WU L, SHU L, et al. Influence of water shock wave on attenuation characteristics under bubble curtain with different settings [J]. Science Technology and Engineering, 2018, 18(17): 33–38. doi: 10.3969/j.issn.1671-1815.2018.17.006
|
[13] |
李泽华, 白春华, 刘庆明, 等. 气泡帷幕减弱水中冲击波强度的研究 [J]. 中国安全科学学报, 1999, 10(5): 72–76. doi: 10.16265/j.cnki.issn1003-3033.1999.05.015
LI Z H, BAI C H, LIU Q M, et al. Study on weakening the shock wave in water by bubble heavy curtain [J]. China Safety Science Journal, 1999, 10(5): 72–76. doi: 10.16265/j.cnki.issn1003-3033.1999.05.015
|
[14] |
谢达建, 吴立, 洪江, 等. 气泡帷幕对水下爆破冲击波的削弱作用研究 [J]. 人民长江, 2018, 49(8): 72–77. doi: 10.16232/j.cnki.1001-4179.2018.08.014
XIE D J, WU L, HONG J, et al. Study on weakening effect of bubble curtain on water shock wave in underwater blasting [J]. Yangtze River, 2018, 49(8): 72–77. doi: 10.16232/j.cnki.1001-4179.2018.08.014
|
[15] |
陆少锋, 梁进, 覃才勇, 等. 供风量对水下爆炸冲击波气泡帷幕消波效应的影响 [J]. 工程爆破, 2022, 28(5): 143–148. doi: 10.19931/j.EB.20210013
LU S F, LIANG J, QIN C Y, et al. Influence of air supply rate on wave attenuation effect of bubble curtain for underwater explosion shock wave [J]. Engineering Blasting, 2022, 28(5): 143–148. doi: 10.19931/j.EB.20210013
|
[16] |
胡亮亮, 黄瑞源, 李世超, 等. 水下爆炸冲击波数值仿真研究 [J]. 高压物理学报, 2020, 34(1): 015102. doi: 10.11858/gywlxb.20190773
HU L L, HUANG R Y, LI S C, et al. Shock wave simulation of underwater explosion [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015102. doi: 10.11858/gywlxb.20190773
|
[17] |
刘世聪, 王秋生, 娄浩然. 装药深度及空气域尺寸对水下爆炸的影响分析 [J]. 水下无人系统学报, 2019, 27(6): 664–672. doi: 10.11993/j.issn.2096-3920.2019.06.010
LIU S C, WANG Q S, LOU H R. Effects of charge depth and air domain size on underwater explosion [J]. Journal of Unmanned Undersea Systems, 2019, 27(6): 664–672. doi: 10.11993/j.issn.2096-3920.2019.06.010
|
[18] |
黄洪, 卢熹, 王健. 柱形装药水下爆炸近场冲击波数值仿真 [J]. 水下无人系统学报, 2021, 29(4): 471–476. doi: 10.11993/j.issn.2096-3920.2021.04.015
HUANG H, LU X, WANG J. Near field shock wave numerical simulation of cylindrical charge underwater explosion [J]. Journal of Unmanned Undersea Systems, 2021, 29(4): 471–476. doi: 10.11993/j.issn.2096-3920.2021.04.015
|
[19] |
鲁天龙. 气泡帷幕周围流场运动特性数值模拟研究 [D]. 长沙: 长沙理工大学, 2020.
LU T L. Numerical simulation of flow field motion characteristics around bubble curtain [D]. Changsha: Changsha University of Technology, 2020.
|
[20] |
王思, 胡晶, 张雪东, 等. 不同水深水下爆炸数值及离心试验研究 [J]. 哈尔滨工业大学学报, 2020, 52(6): 78–84. doi: 10.11918/202001082
WANG S, HU J, ZHANG X D, et al. Numerical analysis and centrifugal test of underwater explosion effect at different water depths [J]. Journal of Harbin Institute of Technology, 2020, 52(6): 78–84. doi: 10.11918/202001082
|
[21] |
盛振新, 刘荣忠, 郭锐. 壳体厚度和爆炸深度对水下爆炸冲击波的影响 [J]. 火炸药学报, 2011, 34(3): 45–47, 64. doi: 10.3969/j.issn.1007-7812.2011.03.012
SHENG Z X, LIU R Z, GUO R. Effect of shell thickness and explosion depth on underwater explosive shock wave [J]. Chinese Journal of Explosives & Propellants, 2011, 34(3): 45–47, 64. doi: 10.3969/j.issn.1007-7812.2011.03.012
|
[22] |
陈兴, 周兰伟, 李福明, 等. 爆炸深度对装药水下载荷的影响 [J]. 兵器装备工程学报, 2021, 42(8): 79–84. doi: 10.11809/bqzbgcxb2021.08.013
CHEN X, ZHOU L W, LI F M, et al. Research on influence of depth of charge on underwater explosion load [J]. Journal of Ordnance Equipment Engineering, 2021, 42(8): 79–84. doi: 10.11809/bqzbgcxb2021.08.013
|
[23] |
尹岳降, 李瑞泽, 陈明, 等. 基于正交试验法的爆破块度分布影响因素敏感性分析 [J]. 爆破, 2019, 36(4): 37–42. doi: 10.3963/j.issn.1001-487X.2019.04.005
YIN Y J, LI R Z, CHEN M, et al. Sensitivity analysis of influencing factors of blasting fragmentation distribution based on orthogonal experiment method [J]. Blasting, 2019, 36(4): 37–42. doi: 10.3963/j.issn.1001-487X.2019.04.005
|
[24] |
张世豪, 韩晶, 焦国太, 等. 单个装药混凝土爆破毁伤效果敏感性分析 [J]. 工程爆破, 2014, 20(3): 5–9. doi: 10.3969/j.issn.1006-7051.2014.03.002
ZHANG S H, HAN J, JIAO G T, et al. Sensitivity analysis of blasting damage effect in concrete based on single charge [J]. Engineering Blasting, 2014, 20(3): 5–9. doi: 10.3969/j.issn.1006-7051.2014.03.002
|
[25] |
史秀志, 王怀勇, 刘金明, 等. 基于粗糙集的影响爆破振动特征参量因素的敏感性分析 [J]. 爆破器材, 2009, 38(2): 1–4, 7. doi: 10.3969/j.issn.1001-8352.2009.02.001.
SHI X Z, WANG H Y, LIU J M, et al. Sensitivity analysis of the factors impact of blasting vibration characteristic parameters based on rough set theory [J]. Explosive Materials, 2009, 38(2): 1–4, 7. doi: 10.3969/j.issn.1001-8352.2009.02.001.
|
[26] |
胡玉林, 姜俊杰, 罗健琛, 等. 基于多因素方差分析探究灌水施肥量对番茄产量的影响 [J]. 浙江农业科学, 2023, 64(5): 1042–1045. doi: 10.16178/j.issn.0528-9017.20230126
HU Y L, JIANG J J, LUO J C, et al. Exploring the effect of irrigation and fertilizer application on tomato yield based on multi-factor analysis of variance [J]. Journal of Zhejiang Agricultural Sciences, 2023, 64(5): 1042–1045. doi: 10.16178/j.issn.0528-9017.20230126
|
[27] |
刘世涛, 郝兵元, 杨冉, 等. 基于方差分析法坚硬顶板下矿压显现分析 [J]. 煤炭技术, 2022, 41(7): 20–23. doi: 10.13301/j.cnki.ct.2022.07.005
LIU S T, HAO B Y, YANG R, et al. Analysis of mineral pressure under rigid top plate based on variance analysis [J]. Coal Technology, 2022, 41(7): 20–23. doi: 10.13301/j.cnki.ct.2022.07.005
|
[28] |
王志建, 龙顺忠, 李颖宏. 基于正交试验的感应控制参数组合优化 [J]. 浙江大学学报(工学版), 2023, 57(6): 1128–1136. doi: 10.3785/j.issn.1008-973X.2023.06.008
WANG Z J, LONG S Z, LI Y H. Combination optimization of induction control parameters based on orthogonal test [J]. Journal of Zhejiang University (Engineering Science), 2023, 57(6): 1128–1136. doi: 10.3785/j.issn.1008-973X.2023.06.008
|