Volume 38 Issue 1
Feb 2024
Turn off MathJax
Article Contents
JIAO Yifei, XIONG Xiaoman, REN Hao, MI Hongfu, HE Guoqin, LI Pin, WEI Xin. Effect of Various Material Obstacles on the Promoting Explosion of Methane-Hydrogen Premixed Gas[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 015202. doi: 10.11858/gywlxb.20230682
Citation: JIAO Yifei, XIONG Xiaoman, REN Hao, MI Hongfu, HE Guoqin, LI Pin, WEI Xin. Effect of Various Material Obstacles on the Promoting Explosion of Methane-Hydrogen Premixed Gas[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 015202. doi: 10.11858/gywlxb.20230682

Effect of Various Material Obstacles on the Promoting Explosion of Methane-Hydrogen Premixed Gas

doi: 10.11858/gywlxb.20230682
  • Received Date: 16 Jun 2023
  • Rev Recd Date: 28 Aug 2023
  • Accepted Date: 28 Aug 2023
  • Available Online: 05 Feb 2024
  • Issue Publish Date: 05 Feb 2024
  • Three obstacles with different levels of bending strength was selected for experimental research on the impact of hydrogen-methane mixed gas explosions in order to explore the varying environmental hazards of explosion promotion. During the experiment, the images of the flame in the explosion pipeline and the upstream and downstream pressure were collected. Through the analysis of flame images and explosion pressure data, the flow field accelerated by expanding gas after explosion generates eddy currents behind obstacles, and the flow field produces different eddy currents behind obstacles of different materials, which result in the difference of peak flame velocity of gas in the later stage and the difference of explosion overpressure in pipelines. This proves the correlation between the intensity of promoting explosions and the material of obstacles. In the experiments conducted in this paper, there is a proportional relationship between the intensity of promoting explosions and the bending strength of the obstacle. Moreover, after hydrogen was added, the reaction of the gas base was accelerated and the peak explosion pressure in the obstacle pipes of the three materials began to produce obvious differences. It can be concluded that obstacles and rough walls in the environment will affect the gas explosion effect, and the difference is caused by the characteristics of the material itself, and the difference is affected by the combustion rate of the gas itself.

     

  • loading
  • [1]
    STARR A, LEE J, NG H D. Detonation limits in rough walled tubes [J]. Proceedings of the Combustion Institute, 2015, 35(2): 1989–1996. doi: 10.1016/j.proci.2014.06.130
    [2]
    ShCHELKIN K I, TROSHIN Y K. Non-stationary phenomena in the gaseous detonation front [J]. Combustion and Flame, 1963, 7: 143–151. doi: 10.1016/0010-2180(63)90172-X
    [3]
    SHCHELKIN K I. Instability of combustion and detonation of gases [J]. Soviet Physics Uspekhi, 1966, 8(5): 780–797. doi: 10.1070/PU1966v008n05ABEH003038
    [4]
    MOEN I O, DONATO M, KNYSTAUTAS R, et al. Flame acceleration due to turbulence produced by obstacles [J]. Combustion and Flame, 1980, 39(1): 21–32. doi: 10.1016/0010-2180(80)90003-6
    [5]
    NA’INNA A M, PHYLAKTOU H N, ANDREWS G E. The acceleration of flames in tube explosions with two obstacles as a function of the obstacle separation distance [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1597–1603. doi: 10.1016/j.jlp.2013.08.003
    [6]
    FAIRWEATHER M, HARGRAVE G K, IBRAHIM S S, et al. Studies of premixed flame propagation in explosion tubes [J]. Combustion and Flame, 1999, 116(4): 504–518. doi: 10.1016/S0010-2180(98)00055-8
    [7]
    YU M G, ZHENG K, CHU T K. Gas explosion flame propagation over various hollow-square obstacles [J]. Journal of Natural Gas Science and Engineering, 2016, 30: 221–227. doi: 10.1016/j.jngse.2016.02.009
    [8]
    WEN X P, YU M G, JI W T, et al. Methane-air explosion characteristics with different obstacle configurations [J]. International Journal of Mining Science and Technology, 2015, 25(2): 213–218. doi: 10.1016/j.ijmst.2015.02.008
    [9]
    WEN X P, YU M G, LIU Z C, et al. Large eddy simulation of methane-air deflagration in an obstructed chamber using different combustion models [J]. Journal of Loss Prevention in the Process Industries, 2012, 25(4): 730–738. doi: 10.1016/j.jlp.2012.04.008
    [10]
    MASRI A R, IBRAHIM S S, NEHZAT N, et al. Experimental study of premixed flame propagation over various solid obstructions [J]. Experimental Thermal and Fluid Science, 2000, 21(1/2/3): 109–106. doi: 10.1016/S0894-1777(99)00060-6
    [11]
    JOHANSEN C T, CICCARELLI G. Modeling the initial flame acceleration in an obstructed channel using large eddy simulation [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 571–585. doi: 10.1016/j.jlp.2012.12.005
    [12]
    JOHANSEN C T, CICCARELLI G. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel [J]. Combustion and Flame, 2009, 156(2): 405–416. doi: 10.1016/j.combustflame.2008.07.010
    [13]
    CICCARELLI G, JOHANSEN R T, PARRAVANI R. The role of shock-flame interactions on flame acceleration in an obstacle laden channel [J]. Combustion and Flame, 2010, 157(11): 2125–2136. doi: 10.1016/j.combustflame.2010.05.003
    [14]
    SALAMANDRA G D, BAZHENOVA T V, NABOKO I M. Formation of detonation wave during combustion of gas in combustion tube [J]. Symposium (International) on Combustion, 1958, 7(1): 851–855. doi: 10.1016/S0082-0784(58)80128-9
    [15]
    ZHANG B, LIU H, LI Y C. The effect of instability of detonation on the propagation modes near the limits in typical combustible mixtures [J]. Fuel, 2019, 253: 305–310. doi: 10.1016/j.fuel.2019.05.006
    [16]
    SULAIMAN S Z, KASMANI R M, MUSTAFA A, et al. Effect of obstacle on deflagration to detonation transition (DDT) in closed pipe or channel-an overview [J]. Jurnal Teknologi, 2013, 66(1): 49–52. doi: 10.11113/jt.v66.1326
    [17]
    OGAWA T, GAMEZO V N, ORAN E S. Flame acceleration and transition to detonation in an array of square obstacles [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 355–362. doi: 10.1016/j.jlp.2011.12.009
    [18]
    ZHANG B, LIU H, YAN B J. Investigation on the detonation propagation limit criterion for methane-oxygen mixtures in tubes with different scales [J]. Fuel, 2019, 239: 617–622. doi: 10.1016/j.fuel.2018.11.062
    [19]
    BANG B H, AHN C S, KIM Y T, et al. Deflagration-to-detonation transition in pipes: the analytical theory [J]. Applied Mathematical Modelling, 2019, 66: 332–343. doi: 10.1016/j.apm.2018.09.023
    [20]
    KIVERIN A D, YAKOVENKO I S. Estimation of critical conditions for deflagration-to-detonation transition in obstructed channels filled with gaseous mixtures [J]. Mathematical Modelling of Natural Phenomena, 2018, 13(6): 54. doi: 10.1051/mmnp/2018071
    [21]
    COATES A M, MATHIAS D L, CANTWELL B J. Numerical investigation of the effect of obstacle shape on deflagration to detonation transition in a hydrogen-air mixture [J]. Combustion and Flame, 2019, 209: 278–290. doi: 10.1016/j.combustflame.2019.07.044
    [22]
    LEAL C A, SANTIAGO G F. Do tree belts increase risk of explosion for LPG spheres? [J]. Journal of Loss Prevention in the Process Industries, 2004, 17(3): 217–224. doi: 10.1016/j.jlp.2004.02.003
    [23]
    BAKKE J R, WINGERDEN K V, HOORELBEKE P, et al. A study on the effect of trees on gas explosions [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(6): 878–884. doi: 10.1016/j.jlp.2010.08.007
    [24]
    LI Q, LU S X, XU M J, et al. Comparison of flame propagation in a tube with a flexible/rigid obstacle [J]. Energy & Fuels, 2016, 30(10): 8720–8726. doi: 10.1021/acs.energyfuels.6b01594
    [25]
    LI Q, CICCARELLI G, SUN X X, et al. Flame propagation across a flexible obstacle in a square cross-section channel [J]. International Journal of Hydrogen Energy, 2018, 43(36): 17480–17491. doi: 10.1016/j.ijhydene.2018.07.077
    [26]
    LI Q, SUN X X, WANG X, et al. Experimental study of flame propagation across flexible obstacles in a square cross-section channel [J]. International Journal of Hydrogen Energy, 2019, 44(7): 3944–3952. doi: 10.1016/j.ijhydene.2018.12.085
    [27]
    李权. 管道内障碍物对氢-空气预混火焰传播动力学影响研究 [D]. 合肥: 中国科学技术大学, 2019.
    [28]
    YU M G, ZHENG K, ZHENG L G, et al. Effects of hydrogen addition on propagation characteristics of premixed methane/air flames [J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 1–9. doi: 10.1016/j.jlp.2015.01.017
    [29]
    YU S W, DUAN Y L, LONG F Y, et al. The influence of flexible/rigid obstacle on flame propagation and blast injuries risk in gas explosion [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023, 45(2): 4520–4536.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(103) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return