
Citation: | XIAO Likang, FENG Qiu, FANG Leiming, ZHOU Zhangyang, XIONG Zhengwei, LAN Jianghe, YANG Jia, LIU Yi, GAO Zhipeng. Acoustic and Elastic Properties of Polycrystalline Potassium Sodium Niobate under High Pressures[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 061101. doi: 10.11858/gywlxb.20230660 |
功能梯度材料(Functionally Graded Materials, FGM)的概念是1984年在航空飞机计划中首次提出的[1],FGM的特性在于它的组成和结构随着体积的变化而变化,从而导致材料相应性质发生改变。因其材料特性呈幂律分布[2-3],FGM被广泛应用于工程领域,如航空航天、机械工程、生物医学等。圆柱壳在联合荷载作用下的屈曲分析备受学术界关注[4-5]。目前,对FGM板壳的研究较为深入[6-8]。Beni等[9]利用改进的偶应力理论,对FGM圆柱壳在不同边界条件下的动力屈曲进行了分析;Kargarnovin等[10]研究了轴向荷载作用下FGM圆柱壳的动力屈曲;Sofiyev等[11]研究了横向压力下功能梯度正交各向异性圆柱壳的动力屈曲,推导出基于一阶剪切变形理论的功能梯度正交各向异性圆柱壳的稳定性和相容性方程;Khazaeinejad等[12]研究了弹性模量在厚度方向上连续变化的FGM圆柱壳在复合外压和轴向压缩载荷作用下的动力屈曲;Khalili等[13]研究了横向冲击载荷作用下FGM圆柱壳的动力屈曲;Alashti等[14]对变厚度FGM圆柱壳外压和轴向压缩的动力屈曲问题进行了分析。
基于以上研究,本研究讨论了FGM圆柱壳在轴向荷载作用下的动力屈曲。根据Donnell壳体理论和经典板壳理论,利用Hamilton变分原理得到FGM圆柱壳的动力屈曲控制方程;采用分离变量法求得动力屈曲临界荷载表达式;通过MATLAB软件计算动力屈曲临界荷载,讨论由不同材料(陶瓷和钛、陶瓷和铁、陶瓷和铜)组成的FGM圆柱壳的径厚比(R/h)、梯度指数(k)、环向模态数(m)、轴向模态数(n)等对临界荷载的影响。
如图 1所示,FGM圆柱壳长度为l,半径为R,总厚度为h,选取柱坐标系(x, θ, z),其相应位移为(u, v, w)。FGM的材料属性(弹性模量E、密度ρ、泊松比μ等)呈幂律分布[2-3],表示为
P(z)=(P1−P2)(2z+h2h)k+P2 | (1) |
式中:P为物性参数,下标“1”和“2”分别代表组分1和组分2;k为梯度指数,k∈(0, ∞)。圆柱壳内任意点的物性参数为
{E(z)=(E1−E2)(2z+h2h)k+E2ρ(z)=(ρ1−ρ2)(2z+h2h)k+ρ2μ(z)=(μ1−μ2)(2z+h2h)k+μ2 | (2) |
根据Donnell壳体理论,圆柱壳的小挠度几何方程为
{εx=ε0x+zKxεθ=ε0θ+zKθγxθ=γ0xθ+zKxθ,{u=u0−z∂w∂xv=v0−z∂wR∂θw=w0,{ε0x=∂u0∂xε0θ=∂v0R∂θ−w0Rγ0xθ=∂u0R∂θ−∂v0∂x,{Kx=−∂2w0∂x2Kθ=−∂2w0R2∂θ2Kxθ=−2∂2w0R∂x∂θ | (3) |
式中:ε为正应变,γ为切应变,上、下标“0”表示壳体中面,K为壳体曲率。
根据经典板壳理论,FGM圆柱壳的内力N与内力矩M可表示为
(NxNθNxθMxMθMxθ)=(A11A12A16B11B12B16A21A22A26B21B22B26A16A26A66B16B26B66B11B12B16D11D12D16B21B22B26D21D22D26B16B26B66D16D26D66)(ε0xε0θγ0xθKxKθKxθ) | (4) |
式中:Aij、Bij、Dij(i, j=1, 2, 6)分别为FGM圆柱壳的拉伸刚度、耦合刚度和弯曲刚度系数矩阵分量。A11=A22=∫h/2−h/2E(z)1−μ2(z)dz, A12=A21=∫h/2−h/2μ(z)E(z)1−μ2(z)dz, A66=∫h/2−h/2E(z)2[1+μ(z)]dz, B11=B22=∫h/2−h/2E(z)1−μ2(z)zdz, B12=B21=∫h/2−h/2μ(z)E(z)1−μ2(z)zdz, B66=∫h/2−h/2E(z)2[1+μ(z)]zdz, D11=D22=∫h/2−h/2E(z)1−μ2(z)z2dz, D12=D21=∫h/2−h/2μ(z)E(z)1−μ2(z)z2dz, D66=∫h/2−h/2E(z)2[1+μ(z)]z2dz。FGM圆柱壳的力学性能为各向同性[15],那么:A16=A26=B16=B26=D16=D26=0。
对于圆柱壳,系统的应变能(不考虑剪力)为
U=12∫2π0∫l0(Nxε0x+Nθε0θ+Nxθγ0xθ+MxKx+MθKθ+MxθKxθ)Rdxdθ | (5) |
动能为
T=12∫h/2−h/2∫2π0∫l0ρ(z)[(∂u∂t)2+(∂v∂t)2+(∂w∂t)2]Rdxdθdz | (6) |
外力功为
W=12∫2π0∫l0N(t)(∂w0∂x)2Rdxdθ | (7) |
Hamilton变分原理为
δ∫t1t2(T−U+W)dt=0 | (8) |
将(3)式~(7)式代入(8)式中,由Donnell壳体理论可知,圆柱壳内力沿环向均匀分布,忽略中面位移[16],由u0、v0、w0的变分系数为零,整理得到FGM圆柱壳的动力屈曲控制方程为
4I0∂2w0∂t−I2(∂4w0R2∂θ2∂t2+∂4w0∂x2∂t2)=−4A22w0R2−4B12R2∂2w0∂x2−4B22R∂2w0R2∂θ2−D11∂4w0∂x4−2(D12+2D66)∂4w0R2∂x2∂θ2−D22∂4w0R4∂θ4+N(t)∂2w0∂x2 | (9) |
设径向位移表示为[17]
w=Y(x)T(t)eimθ | (10) |
将(10)式代入(9)式中,分离变量得
{Y(4)=α2Y″+β2Y=0¨T−λT=0 | (11) |
其中
α2=1D11[4B12R2+2R2(D12+2D66)m2−N(t)−I2λ] | (12) |
β2=1D11[4A22R2+4B22R3+D22R4m4+4I0λ−I2R2m2λ] | (13) |
当α4>4β2>0且λ>0时,圆柱壳屈曲[18-20],其动力屈曲解为
Y(x)=C1sin(k1x)+C2cos(k1x)+C3sin(k2x)+C4cos(k2x) | (14) |
式中:C1~C4为系数,k1=√α2−√α4−4β22,k2=√α2+√α4−4β22。
(14)式满足下列两种边界条件:
(1) 对于一端夹支另一端固支的圆柱壳,其边界条件为
{Y(0)=Y′(0)=0Y(l)=Y′(l)=0 | (15) |
(2) 对于一端简支另一端固支的圆柱壳,其边界条件为
{Y(0)=Y″(0)=0Y(l)=Y′(l)=0 | (16) |
将(14)式代入(15)式中,整理得到如下齐次线性方程组
(0101k10k20sin(k1l)cos(k1l)sin(k2l)cos(k2l)k1cos(k1l)−k1sin(k1l)k2cos(k2l)−k2sin(k2l))(C1C2C3C4)=0 | (17) |
若要(17)式有非平凡解,其系数行列式必为零,于是
2k1k2−2k1k2cos(k1l)cos(k2l)−(k21+k22)sin(k1l)sin(k2l)=0 | (18) |
由k1和k2可得
{k21+k22=(n21+n22)π2/l2=α2k21k22=n21n22π4/l4=β2 | (19) |
将(19)式代入(12)式和(13)式中,得一端夹支另一端固支时FGM圆柱壳动力屈曲临界荷载Ncr,即
Ncr=D11π2(n21+n22)l2−B12R2+2(D12+2D66)m2R2+h2(D11n21n22π4R4−A22l4R2+4B22m2R2l4−D22l4m4)l4R2(h2m2−12R2) | (20) |
式中:n1=n=1, 2, 3, …;m=1, 2, 3, …;n2=n+2。
同理可得一端简支另一端固支时FGM圆柱壳动力屈曲临界荷载
Ncr=D11π2(n21+n22)l2−B12R2+2(D12+2D66)m2R2+h2(D11n21n22π4R4−A22l4R2+4B22m2R2l4−D22l4m4)l4R2(h2m2−12R2) | (21) |
此时,n1=n=1, 2, 3, …;m=1, 2, 3, …;n2=n+1。
将FGM退化成金属材料,得到金属材料圆柱壳动力屈曲临界荷载
Ncr=D11π2(n21+n22)l2+2D12m2R2+h2(D11n21n22π4R4−A22l4R2−D22l4m4)l4R2(h2m2−12R2) | (22) |
(22)式与文献[16]中的表达式相同。
根据(10)式,取一端夹支另一端固支时圆柱壳动力屈曲解的表达式[16]
w=T(t)[sin(n1πxl)−n1n2sin(n2πxl)]sin(mθ) | (23) |
将(23)式代入控制方程(9)式中,计算并化简整理得到临界荷载表达式
Ncr=(n21+n22)D11π2l2+2m2(D12+2D66)R2 | (24) |
(24)式与不考虑转动惯量时用分离变量得到的结果相同,此时n1=n=1, 2, 3, …; m=1, 2, 3, …; n2=n+2。同理可得当边界条件为一端简支另一端固支时的临界荷载表达式,与(24)式相同,此时n1=n=1, 2, 3, …; m=1, 2, 3, …; n2=n+1。
采用MATLAB软件编程,对FGM圆柱壳动力屈曲临界荷载进行计算。讨论由不同材料(陶瓷-钛、陶瓷-铁、陶瓷-铜)组成的FGM圆柱壳(见图 2)的径厚比(R/h)、梯度指数(k)、环向模态数(m)、轴向模态数(n)对临界荷载Ncr的影响。基本材料参数如表 1所示。
Material | E/GPa | ρ/(g·cm-3) | μ |
Ceramic | 385 | 3.96 | 0.230 |
Ti | 109 | 4.54 | 0.410 |
Fe | 155 | 7.86 | 0.291 |
Cu | 119 | 8.96 | 0.326 |
图 3表示n=1、m=2、k=1、R/h=20时,不同材料组成下Ncr与临界长度l(本研究中临界长度即为圆柱壳长度)的关系曲线。从图 3可以看出:Ncr随l的增加而减小;当l<0.5 m时,Ncr随l的增加而迅速减小;当l>0.5 m时,Ncr随l的增大缓慢减小,且逐渐趋于常数;同一l下,陶瓷-铜的Ncr最大,陶瓷-铁次之,陶瓷-钛的Ncr最小。以下均以陶瓷-钛为例进行讨论。
图 4和图 5分别表示冲击端为夹支和简支时n=1、m=2、k=1时不同R/h下Ncr与l的关系曲线。可以看出:当l增加时,Ncr减小,且逐渐趋于常数;在同一l下圆柱壳的Ncr随着R/h的增大而减小;当R/h和l一定时,冲击端为夹支时的Ncr明显比冲击端为简支时的Ncr大,说明约束条件对Ncr有较大影响。
图 6和图 7分别表示冲击端为夹支和简支条件下n=1、m=2、R/h=20时不同k下Ncr与l的关系曲线。可见:FGM圆柱壳的Ncr随着l的增加而减小;在同一l下,FGM圆柱壳的Ncr随着k的增加而增加;当l<0.5 m时,Ncr随l的增加迅速减小,当l>0.5 m时,Ncr随l的增加缓慢减小并逐渐趋于常数;当k=1且l一定时,冲击端为夹支时的Ncr明显比冲击端为简支时的Ncr大,再次说明约束条件对Ncr的影响较大。
图 8和图 9分别表示冲击端为夹支和简支,n=1、k=1、R/h=20时不同m下Ncr与l的关系曲线。可以看出:当l在一定范围内时,Ncr随l的增加而迅速减小,超出这一范围后Ncr随l的增加而缓慢减小且逐渐趋于常数;同一l下,随着m的增大,FGM圆柱壳的Ncr增大,表明Ncr越大,高阶模态越易被激发。当m=6且l一定时,冲击端为夹支时的Ncr明显比冲击端为简支时的Ncr大,表明约束条件对Ncr有较大影响。
图 10和图 11分别表示冲击端为夹支和简支,m=1、k=1、R/h=20时不同n下Ncr与l的关系曲线。图 10和图 11显示:Ncr随着l的增加而减小;不同n条件下,Ncr随l的增加逐渐趋于同一值;当l<1 m时,在同一l下Ncr随n的增加而增加,说明Ncr越大,高阶模态越容易被激发。
图 12为不同环向模态数m下FGM圆柱壳的动力屈曲模态。可以看出:随着m的增大,圆柱壳的模态变得越来越复杂,俯视图由单一形变为多瓣形;当m=6时,俯视图为12瓣形。
图 13为不同轴向模态数n下FGM圆柱壳的动力屈曲模态图。由图 13可知:随着n的增加,模态图变得越来越复杂。由FGM圆柱壳的俯视图可知,各阶模态数下动力屈曲模态图为轴对称。
(1) 根据Donnell壳体理论和经典板壳理论,由Hamilton变分原理得到轴向荷载作用下FGM圆柱壳的动力屈曲控制方程。
(2) 由圆柱壳周向连续性设出径向位移的周向形式,并用分离变量法得到不同约束条件下FGM圆柱壳动力屈曲临界荷载的表达式和屈曲解式。
(3) 利用MATLAB对临界荷载进行计算,得到:在轴向模态数(n)、环向模态数(m)、梯度指数(k)、径厚比(R/h)一定的情况下,同种材料组成的圆柱壳的临界荷载随着临界长度的增加而减小;在n、m、k、l一定的情况下,临界荷载随着径厚比的增大而减小;在n、m、R/h、l一定的情况下,临界荷载随着梯度指数k的增加而增加;不同约束条件下,冲击端为夹支的临界荷载大于冲击端为简支的临界荷载,表明约束条件对临界荷载有较大影响;圆柱壳的临界荷载随模态数的增加而增大,表明临界荷载越大,越容易激发高阶模态;圆柱壳的动力屈曲模态随模态数的增加变得更为复杂。
[1] |
JAFFE B, COOK W R JR, JAFFE H. Piezoelectric ceramics [M]. New York: Academic Press, 1971.
|
[2] |
LINES M E, GLASS A M. Principles and applications of ferroelectrics and related materials [M]. Oxford: Clarendon Press, 1977.
|
[3] |
YOU Y M, LIAO W Q, ZHAO D W, et al. An organic-inorganic perovskite ferroelectric with large piezoelectric response [J]. Science, 2017, 357(6348): 306–309. doi: 10.1126/science.aai8535
|
[4] |
SHIRANE G, SAWAGUCHI E, TAKAGI Y. Dielectric properties of lead zirconats [J]. Physical Review, 1951, 84(3): 476–481. doi: 10.1103/PhysRev.84.476
|
[5] |
LIU W F, REN X B. Large piezoelectric effect in Pb-free ceramics [J]. Physical Review Letters, 2009, 103(25): 257602. doi: 10.1103/PhysRevLett.103.257602
|
[6] |
肖定全, 吴文娟, 梁文峰, 等. 钙钛矿型铌酸盐系无铅压电陶瓷材料与器件的研究进展 [J]. 材料导报, 2010, 24(15): 1–12.
XIAO D Q, WU W J, LIANG W F, et al. Research progress of peroskite structure niobate-based lead-free piezoelectric ceramics and devices [J]. Materials Review, 2010, 24(15): 1–12.
|
[7] |
CROSS E. Lead-free at last [J]. Nature, 2004, 432(7013): 24–25. doi: 10.1038/nature03142
|
[8] |
SHROUT T R, ZHANG S J. Lead-free piezoelectric ceramics: alternatives for PZT? [J]. Journal of Electroceramics, 2007, 19(1): 113–126. doi: 10.1007/s10832-007-9047-0
|
[9] |
RÖDEL J, JO W, SEIFERT K T P, et al. Perspective on the development of lead-free piezoceramics [J]. Journal of the American Ceramic Society, 2009, 92(6): 1153–1177. doi: 10.1111/j.1551-2916.2009.03061.x
|
[10] |
SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics [J]. Nature, 2004, 432(7013): 84–87. doi: 10.1038/nature03028
|
[11] |
BAH M, GIOVANNELLI F, SCHOENSTEIN F, et al. High electromechanical performance with spark plasma sintering of undoped K0.5Na0.5NbO3 ceramics [J]. Ceramics International, 2014, 40(5): 7473–7480. doi: 10.1016/j.ceramint.2013.12.097
|
[12] |
CORDERO F. Elastic properties and enhanced piezoelectric response at morphotropic phase boundaries [J]. Materials, 2015, 8(12): 8195–8245. doi: 10.3390/ma8125452
|
[13] |
JIANG X, ZHAO J J, JIANG X. Correlation between hardness and elastic moduli of the covalent crystals [J]. Computational Materials Science, 2011, 50(7): 2287–2290. doi: 10.1016/j.commatsci.2011.01.043
|
[14] |
CHEN X Q, NIU H Y, FRANCHINI C, et al. Hardness of T-carbon: density functional theory calculations [J]. Physical Review B, 2011, 84(12): 121405. doi: 10.1103/PhysRevB.84.121405
|
[15] |
NIU H Y, NIU S W, OGANOV A R. Simple and accurate model of fracture toughness of solids [J]. Journal of Applied Physics, 2019, 125(6): 065105. doi: 10.1063/1.5066311
|
[16] |
SANDITOV D S, DARMAEV M V, SANDITOV B D, et al. Grüneisen parameter and velocities of propagation of sound waves in rigid bodies [J]. Russian Physics Journal, 2009, 52(4): 386–389. doi: 10.1007/s11182-009-9239-y
|
[17] |
PUGH S F. XCII. relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823–843. doi: 10.1080/14786440808520496
|
[18] |
ZHANG F P, LIU Y S, HE H L, et al. Electrical response of KNN lead free ferroelectric ceramics under shock compression [J]. AIP Conference Proceedings, 2018, 1979(1): 060012. doi: 10.1063/1.5044809
|
[19] |
GADELMAWLA A, ECKSTEIN U, RIESS K, et al. Temperature- and stress-dependent electromechanical properties of phase-boundary-engineered KNN-based piezoceramics [J]. Journal of the American Ceramic Society, 2023, 106(4): 2326–2337. doi: 10.1111/jace.18917
|
[20] |
WANG K, LI J F. (K,Na)NbO3-based lead-free piezoceramics: phase transition, sintering and property enhancement [J]. Journal of Advanced Ceramics, 2012, 1(1): 24–37. doi: 10.1007/s40145-012-0003-3
|
[21] |
ZHANG M H, WANG K, DU Y J, et al. High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite [J]. Journal of the American Chemical Society, 2017, 139(10): 3889–3895. doi: 10.1021/jacs.7b00520
|
[22] |
LI Q Z, YANG X X, PENG F, et al. Elasticity, mechanical and thermal properties of submicron h -AlN: in-situ high pressure ultrasonic study [J]. Journal of the European Ceramic Society, 2021, 41(9): 4788–4793. doi: 10.1016/j.jeurceramsoc.2021.03.056
|
[23] |
XU Y Q, WU S Y, ZHANG L J, et al. First-principles study of structural, electronic, elastic, and optical properties of cubic KNbO3 and KTaO3 crystals [J]. Physica Status Solidi B, 2017, 254(5): 1600620. doi: 10.1002/pssb.201600620
|
[24] |
WIESENDANGER E. Dielectric, mechanical and optical properties of orthorhombic KNbO3 [J]. Ferroelectrics, 1973, 6(1): 263–281. doi: 10.1080/00150197408243977
|
[25] |
LI H, WANG L, XU L Z, et al. First-principles study on the structural, elastic, piezoelectric and electronic properties of (BaTiO3, LiTaO3)-modified KNbO3 [J]. Materials Today Communications, 2021, 26: 102092. doi: 10.1016/j.mtcomm.2021.102092
|
[26] |
XU Y Q, WU S Y, WU L N, et al. First-principles investigation on the structural, elastic, electronic and optical properties and possible mechanism of the photocatalytic properties for orthorhombic and tetragonal KNbO3 [J]. Materials Science in Semiconductor Processing, 2018, 75: 253–262. doi: 10.1016/j.mssp.2017.11.041
|
[27] |
KALINICHEV A G, BASS J D, ZHA C S, et al. Elastic properties of orthorhombic KNbO3 single crystals by Brillouin scattering [J]. Journal of Applied Physics, 1993, 74(11): 6603–6608. doi: 10.1063/1.355099
|
[28] |
KHATTAK S A, WABAIDUR S M, ISLAM A, et al. First-principles structural, elastic and optoelectronics study of sodium niobate and tantalate perovskites [J]. Scientific Reports, 2022, 12(1): 21700. doi: 10.1038/s41598-022-26250-7
|
[29] |
XU Y Q, WU S Y, WU L N, et al. Structural, elastic, electronic and optical properties of cubic NaNbO3 crystals under pressure [J]. International Journal of Modern Physics B, 2018, 32(25): 1850282. doi: 10.1142/S021797921850282X
|
[30] |
JAEGER R E, EGERTON L. Hot pressing of potassium-sodium niobates [J]. Journal of the American Ceramic Society, 1962, 45(5): 209–213. doi: 10.1111/j.1151-2916.1962.tb11127.x
|
[31] |
PINHO R, TKACH A, CARPENTER M A, et al. Elastic moduli of potassium sodium niobate ceramics: impact of spark plasma texturing [J]. Scripta Materialia, 2022, 218: 114837. doi: 10.1016/j.scriptamat.2022.114837
|
[32] |
ZOU Y T, LIU K, WANG P, et al. Sound velocities, elasticity, and mechanical properties of stoichiometric submicron polycrystalline δ-MoN at high pressure [J]. Inorganic Chemistry, 2021, 60(16): 11897–11906. doi: 10.1021/acs.inorgchem.1c00406
|
[33] |
LIU W, LI B S. Elasticity of amorphous zirconium tungstate at high pressure [J]. Applied Physics Letters, 2008, 93(19): 191904. doi: 10.1063/1.3023049
|
[34] |
ZOU Y T, ZHANG W, CHEN T, et al. Thermally induced anomaly in the shear behavior of magnetite at high pressure [J]. Physical Review Applied, 2018, 10(2): 024009. doi: 10.1103/PhysRevApplied.10.024009
|
[35] |
JACKSON I, PATERSON M S. A high-pressure, high-temperature apparatus for studies of seismic wave dispersion and attenuation [J]. Pure and Applied Geophysics, 1993, 141(2): 445–466. doi: 10.1007/BF00998339
|
[36] |
YONEDA A, MORIOKA M. Pressure derivatives of elastic constants of single crystal forsterite [M]//SYONO Y, MANGHNANI M H. High-pressure Research: Application to Earth and Planetary Sciences. Tokyo: Terra Scientific Publishing Company, 1992: 157–166.
|
[37] |
REICHMANN H J, JACOBSEN S D, BALLARAN T B. Elasticity of franklinite and trends for transition-metal oxide spinels [J]. American Mineralogist, 2013, 98(4): 601–608. doi: 10.2138/am.2013.4294
|
[38] |
LI B S, LIEBERMANN R C. Study of the Earth’s interior using measurements of sound velocities in minerals by ultrasonic interferometry [J]. Physics of the Earth and Planetary Interiors, 2014, 233: 135–153. doi: 10.1016/j.pepi.2014.05.006
|
[39] |
SPETZLER H, SHEN A, CHEN G, et al. Ultrasonic measurements in a diamond anvil cell [J]. Physics of the Earth and Planetary Interiors, 1996, 98(1/2): 93–99. doi: 10.1016/S0031-9201(96)03171-8
|
[40] |
LI B S, KUNG J, LIEBERMANN R C. Modern techniques in measuring elasticity of Earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron X-radiation in multi-anvil apparatus [J]. Physics of the Earth and Planetary Interiors, 2004, 143/144: 559–574. doi: 10.1016/j.pepi.2003.09.020
|
[41] |
陈晓芳, 贺端威, 王福龙, 等. 基于铰链式六面顶压机的二级6-8模超高压大腔体内置加热元件的设计与温度标定 [J]. 高压物理学报, 2009, 23(2): 98–104. doi: 10.11858/gywlxb.2009.02.004
CHEN X F, HE D W, WANG F L, et al. Design and temperature calibration for heater cell of split-sphere high pressure apparatus based on the hinge-type cubic-anvil press [J]. Chinese Journal of High Pressure Physics, 2009, 23(2): 98–104. doi: 10.11858/gywlxb.2009.02.004
|
[42] |
王海阔, 贺端威, 许超, 等. 基于国产铰链式六面顶压机的大腔体静高压技术研究进展 [J]. 高压物理学报, 2013, 27(5): 633–661. doi: 10.11858/gywlxb.2013.05.001
WANG H K, HE D W, XU C, et al. Development of large volume-high static pressure techniques based on the hinge-type cubic presses [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 633–661. doi: 10.11858/gywlxb.2013.05.001
|
[43] |
王福龙, 贺端威, 房雷鸣, 等. 基于铰链式六面顶压机的二级6-8型大腔体静高压装置 [J]. 物理学报, 2008, 57(9): 5429–5434. doi: 10.7498/aps.57.5429
WANG F L, HE D W, FANG L M, et al. Design and assembly of split-sphere high pressure apparatus based on the hinge-type cubic-anvil press [J]. Acta Physica Sinica, 2008, 57(9): 5429–5434. doi: 10.7498/aps.57.5429
|
[44] |
WANG X B, CHEN T, QI X T, et al. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus [J]. Journal of Applied Physics, 2015, 118(6): 065901. doi: 10.1063/1.4928147
|
[45] |
CHEN T, GWANMESIA G D, WANG X B, et al. Anomalous elastic properties of coesite at high pressure and implications for the upper mantle X-discontinuity [J]. Earth and Planetary Science Letters, 2015, 412: 42–51. doi: 10.1016/j.jpgl.2014.12.025
|
[46] |
LI B S, CHEN K, KUNG J, et al. Sound velocity measurement using transfer function method [J]. Journal of Physics: Condensed Matter, 2002, 14(44): 11337–11342. doi: 10.1088/0953-8984/14/44/478
|
[47] |
ZOU Y T, WANG X B, CHEN T, et al. Hexagonal-structured ε-NbN: ultra-incompressibility, high shear rigidity and a possible hard superconducting material [J]. Scientific Reports, 2015, 5(1): 10811. doi: 10.1038/srep10811
|
[48] |
COOK R K. Variation of elastic constants and static strains with hydrostatic pressure: a method for calculation from ultrasonic measurements [J]. The Journal of the Acoustical Society of America, 1957, 29(4): 445–449. doi: 10.1121/1.1908922
|
[49] |
ZOU Y T, LI Y, CHEN H Y, et al. Thermoelasticity and anomalies in the pressure dependence of phonon velocities in niobium [J].Applied Physics Letters, 2018, 112(1): 011901. doi: 10.1063/1.5009617
|
[50] |
BIRCH F. Finite elastic strain of cubic crystals [J]. Physical Review, 1947, 71(11): 809–824. doi: 10.1103/PhysRev.71.809
|
[51] |
GU J F, ZOU J, LIU J H, et al. Sintering highly dense ultra-high temperature ceramics with suppressed grain growth [J]. Journal of the European Ceramic Society, 2020, 40(4): 1086–1092. doi: 10.1016/j.jeurceramsoc.2019.11.056
|
[52] |
MA D J, KOU Z L, LIU Y J, et al. Sub-micron binderless tungsten carbide sintering behavior under high pressure and high temperature [J]. International Journal of Refractory Metals and Hard Materials, 2016, 54: 427–432. doi: 10.1016/j.ijrmhm.2015.10.001
|
[53] |
JACOBSEN M K, VELISAVLJEVIC N, KONO Y, et al. Shear-driven instability in zirconium at high pressure and temperature and its relationship to phase-boundary behaviors [J]. Physical Review B, 2017, 95(13): 134101. doi: 10.1103/PhysRevB.95.134101
|
[54] |
SANDITOV D S, BELOMESTNYKH V N. Relation between the parameters of the elasticity theory and averaged bulk modulus of solids [J]. Technical Physics, 2011, 56(11): 1619–1623. doi: 10.1134/S106378421111020X
|
[55] |
LEDBETTER H, LEI M, KIM S. Elastic constants, debye temperatures, and electron-phonon parameters of superconducting cuprates and related oxides [J]. Phase Transitions, 1990, 23(1): 61–70. doi: 10.1080/01411599008241819
|
[56] |
HE R Q, FANG L M, CHEN X P, et al. Experimental study of covalent Cr3C2 with high ionicity: sound velocities, elasticity, and mechanical properties under high pressure [J]. Scripta Materialia, 2023, 224: 115146. doi: 10.1016/j.scriptamat.2022.115146
|
[57] |
FRANTSEVICH I N, VORONOV F F, BOKUTA S A. Elastic constants and elastic moduli of metals and insulators handbook [M]. Kiev: Naukova Dumka, 1983.
|
[58] |
PETROVA E, ERMILOV S, SU R, et al. Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions [J]. Optics Express, 2013, 21(21): 25077–25090. doi: 10.1364/OE.21.025077
|
[59] |
CHEN X Q, NIU H Y, LI D Z, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses [J].Intermetallics, 2011, 19(9): 1275–1281. doi: 10.1016/j.intermet.2011.03.026
|
[60] |
LIANG H, LIN W T, WANG Q M, et al. Ultrahard and stable nanostructured cubic boron nitride from hexagonal boron nitride [J]. Ceramics International, 2020, 46(8): 12788–12794. doi: 10.1016/j.ceramint.2020.02.048
|
[61] |
KVASHNIN A G, ALLAHYARI Z, OGANOV A R. Computational discovery of hard and superhard materials [J]. Journal of Applied Physics, 2019, 126(4): 040901. doi: 10.1063/1.5109782
|
[1] | Cover[J]. Chinese Journal of High Pressure Physics, 2025, 39(4). |
[2] | Contents[J]. Chinese Journal of High Pressure Physics, 2025, 39(2): 1-2. |
[4] | Cover[J]. Chinese Journal of High Pressure Physics, 2025, 39(1). |
[6] | Contents[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 1-2. |
[8] | Contents[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 1-2. |
[9] | Contents[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 1-2. |
[12] | cover[J]. Chinese Journal of High Pressure Physics, 2022, 36(2). |
[19] | 2019-02目录[J]. Chinese Journal of High Pressure Physics, 2019, 33(2). |
[20] | MENG Chuan-Min, SHI Shang-Chun, HUANG Hai-Jun, JI Guang-Fu, TANG Jing-You, YANG Xiang-Dong. Experimental Measurement for Shock Temperature of Liquid Argon up to 33 GPa[J]. Chinese Journal of High Pressure Physics, 2006, 20(3): 296-300 . doi: 10.11858/gywlxb.2006.03.013 |
Material | E/GPa | ρ/(g·cm-3) | μ |
Ceramic | 385 | 3.96 | 0.230 |
Ti | 109 | 4.54 | 0.410 |
Fe | 155 | 7.86 | 0.291 |
Cu | 119 | 8.96 | 0.326 |