Volume 37 Issue 4
Sep 2023
Turn off MathJax
Article Contents
CUI Niansheng, WEI Jianlin, YUAN Zengsen, XU Zhenyang, LIU Xin, WANG Xuesong. Simulation Analysis of Mesoscale Characteristics in the Dynamic Fracture Damage of Heterogeneous Rock[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044204. doi: 10.11858/gywlxb.20230638
Citation: CUI Niansheng, WEI Jianlin, YUAN Zengsen, XU Zhenyang, LIU Xin, WANG Xuesong. Simulation Analysis of Mesoscale Characteristics in the Dynamic Fracture Damage of Heterogeneous Rock[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044204. doi: 10.11858/gywlxb.20230638

Simulation Analysis of Mesoscale Characteristics in the Dynamic Fracture Damage of Heterogeneous Rock

doi: 10.11858/gywlxb.20230638
  • Received Date: 07 Apr 2023
  • Rev Recd Date: 29 Apr 2023
  • Available Online: 11 Jul 2023
  • Issue Publish Date: 01 Sep 2023
  • In order to investigate the mesoscale development in the dynamic fracture damage of heterogeneous rocks at the mineral crystal scale, a heterogeneous rock model that can reflect the microstructure characteristics was constructed based on the particle flow code-grain based model (PFC-GBM) method. By establishing the split Hopkinson pressure bar (SHPB) system using finite difference method FLAC2D and discrete element method PFC2D, the dynamic impact failure process of heterogeneous rock under different impact loading was simulated and studied. Through the self-compiled Fish language, the number of intragranular and intergranular microcracks in different minerals during the dynamic failure process was grouped and counted. The microscopic evolution process of dynamic fracture damage of heterogeneous rocks was deeply analyzed from a mesoscopic perspective. The research results show that intergranular failure is an important reason for the failure of the dominant heterogeneous rock under the static uniaxial compression condition. Under impact loading condition, the growth process of microcracks within and between crystals of each mineral had four stages: initiation, rapid growth, slow growth and stop growth. Similar to the growth pattern of the number of microcracks under static uniaxial compression condition, the number of intergranular cracks at the initial stage of dynamic failure was significantly higher than the number of intragranular cracks in each mineral. The rock mainly suffered intergranular damage. As the degree increases, the number of intragranular cracks in dynamic failure gradually exceeds the number of intergranular cracks. In addition, the peak strain rate and the corresponding maximum pressure as well as the dynamic peak strength and the corresponding maximum pressure under different impact loads in the simulation show good linear relationships, which provides a simple method to quickly determine the relevant dynamic mechanical parameters of the rock.

     

  • loading
  • [1]
    张杰, 郭奇峰, 蔡美峰, 等. 循环扰动荷载作用下花岗岩中裂隙萌生扩展过程的颗粒流模拟 [J]. 工程科学学报, 2021, 43(5): 636–646. doi: 10.13374/j.issn2095-9389.2020.03.15.003

    ZHANG J, GUO Q F, CAI M F, et al. Particle flow simulation of the crack propagation characteristics of granite under cyclic load [J]. Chinese Journal of Engineering, 2021, 43(5): 636–646. doi: 10.13374/j.issn2095-9389.2020.03.15.003
    [2]
    李夕兵. 岩石动力学基础与应用 [M]. 北京: 科学出版社, 2014: 258−287.

    LI X B. Rock dynamics fundamentals and applications [M]. Beijing: Science Press, 2014: 258−287.
    [3]
    李晓锋, 李海波, 刘凯, 等. 冲击荷载作用下岩石动态力学特性及破裂特征研究 [J]. 岩石力学与工程学报, 2017, 36(10): 2393–2405. doi: 10.13722/j.cnki.jrme.2017.0539

    LI X F, LI H B, LIU K, et al. Dynamic properties and fracture characteristics of rocks subject to impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2393–2405. doi: 10.13722/j.cnki.jrme.2017.0539
    [4]
    ZHOU Z L, ZHAO Y, JIANG Y H, et al. Dynamic behavior of rock during its post failure stage in SHPB tests [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 184–196. doi: 10.1016/S1003-6326(17)60021-9
    [5]
    赵翰卿, 任会兰. 陶瓷巴西圆盘动态劈裂的离散元模拟 [J]. 兵器装备工程学报, 2021, 42(3): 119–124. doi: 10.11809/bqzbgcxb2021.03.023

    ZHAO H Q, REN H L. Discrete element simulation of dynamic splitting of ceramic Brazilian disc [J]. Journal of Ordnance Equipment Engineering, 2021, 42(3): 119–124. doi: 10.11809/bqzbgcxb2021.03.023
    [6]
    POTYONDY D O. The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions [J]. Geosystem Engineering, 2015, 18(1): 1–28. doi: 10.1080/12269328.2014.998346
    [7]
    INGA C E C, WALTON G, HOLLEY E. Statistical assessment of the effects of grain-structure representation and micro-properties on the behavior of bonded block models for brittle rock damage prediction [J]. Sustainability, 2021, 13(14): 7889. doi: 10.3390/su13147889
    [8]
    WANG Z H, YANG S L, LI L H, et al. A 3D Voronoi clump based model for simulating failure behavior of brittle rock [J]. Engineering Fracture Mechanics, 2021, 248: 107720. doi: 10.1016/j.engfracmech.2021.107720
    [9]
    李博, 梁秦源, 周宇, 等. 基于CT-GBM重构法的花岗岩裂纹扩展规律研究 [J]. 岩石力学与工程学报, 2022, 41(6): 1114–1125. doi: 10.13722/j.cnki.jrme.2021.0837

    LI B, LIANG Q Y, ZHOU Y, et al. Research on crack propagation law of granite based on CT-GBM reconstruction method [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(6): 1114–1125. doi: 10.13722/j.cnki.jrme.2021.0837
    [10]
    ZHANG X P, JI P Q, PENG J, et al. A grain-based model considering pre-existing cracks for modelling mechanical properties of crystalline rock [J]. Computers and Geotechnics, 2020, 127: 103776. doi: 10.1016/j.compgeo.2020.103776
    [11]
    胡训健, 卞康, 谢正勇, 等. 细观结构的非均质性对花岗岩强度及变形影响的颗粒流模拟 [J]. 岩土工程学报, 2020, 42(8): 1540–1548. doi: 10.11779/CJGE202008020

    HU X J, BIAN K, XIE Z Y, et al. Influence of meso-structure heterogeneity on granite strength and deformation with particle flow code [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1540–1548. doi: 10.11779/CJGE202008020
    [12]
    LI H, YANG J, HAN Y, et al. Weibull grain-based model (W-GBM) for simulating heterogeneous mechanical characteristics of salt rock [J]. Engineering Analysis with Boundary Elements, 2019, 108: 227–243. doi: 10.1016/j.enganabound.2019.09.001
    [13]
    SAADAT M, TAHERI A. Modelling micro-cracking behaviour of granite during direct tensile test using cohesive GBM approach [J]. Engineering Fracture Mechanics, 2020, 239: 107297. doi: 10.1016/j.engfracmech.2020.107297
    [14]
    SAADAT M, TAHERI A. Modelling micro-cracking behaviour of pre-cracked granite using grain-based distinct element model [J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4669–4692. doi: 10.1007/s00603-019-01862-0
    [15]
    SAADAT M, TAHERI A, KAWAMURA Y. Investigating asperity damage of natural rock joints in polycrystalline rocks under confining pressure using grain-based model [J]. Computers and Geotechnics, 2021, 135: 104144. doi: 10.1016/j.compgeo.2021.104144
    [16]
    LIU G, CAI M, HUANG M. Mechanical properties of brittle rock governed by micro-geometric heterogeneity [J]. Computers and Geotechnics, 2018, 104: 358–372. doi: 10.1016/j.compgeo.2017.11.013
    [17]
    张涛, 蔚立元, 苏海健, 等. 基于FDM-DEM耦合的冲击损伤大理岩静态断裂力学特征研究 [J]. 爆炸与冲击, 2022, 42(1): 013103. doi: 10.11883/bzycj-2021-0089

    ZHANG T, YU L Y, SU H J, et al. Investigation on the static fracture mechanical characteristics of marble subjected to impact damage based on the FDM-DEM coupled simulation [J]. Explosion and Shock Waves, 2022, 42(1): 013103. doi: 10.11883/bzycj-2021-0089
    [18]
    赵奎, 伍文凯, 曾鹏, 等. 不同细观组分花岗岩力学特性的颗粒流模拟 [J]. 矿业研究与开发, 2020, 40(1): 32–36. doi: 10.13827/j.cnki.kyyk.2020.01.007

    ZHAO K, WU W K, ZENG P, et al. Particle flow code simulation on mechanical properties of various meso-compositions granites [J]. Mining Research and Development, 2020, 40(1): 32–36. doi: 10.13827/j.cnki.kyyk.2020.01.007
    [19]
    刘帅奇, 马凤山, 郭捷, 等. 基于Multi Pb-GBM方法的花岗岩细观力学行为数值研究 [J]. 岩石力学与工程学报, 2020, 39(11): 2283–2295. doi: 10.13722/j.cnki.jrme.2020.0374

    LIU S Q, MA F S, GUO J, et al. Numerical study on mesoscopic mechanical behaviors of granite based on Multi Pb-GBM method [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2283–2295. doi: 10.13722/j.cnki.jrme.2020.0374
    [20]
    CASTRO-FILGUEIRA U, ALEJANO L R, ARZÚA J, et al. Sensitivity analysis of the micro-parameters used in a PFC analysis towards the mechanical properties of rocks [J]. Procedia Engineering, 2017, 191: 488–495. doi: 10.1016/j.proeng.2017.05.208
    [21]
    陈鹏宇, 孔莹, 余宏明. 岩石单轴压缩PFC2D模型细观参数标定研究 [J]. 地下空间与工程学报, 2018, 14(5): 1240–1249.

    CHEN P Y, KONG Y, YU H M. Research on the calibration method of microparameters of a uniaxial compression PFC2D model for rock [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1240–1249.
    [22]
    石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用 [M]. 北京: 中国建筑工业出版社, 2018.

    SHI C, ZHANG Q, WANG S N. Numerical simulation technology and application with particle flow code (PFC5.0) [M]. Beijing: China Architecture and Building Press, 2018.
    [23]
    WONG L N Y, PENG J. Numerical investigation of micro-cracking behavior of brittle rock containing a pore-like flaw under uniaxial compression [J]. International Journal of Damage Mechanics, 2020, 29(10): 1543–1568. doi: 10.1177/1056789520914700
    [24]
    王桂林, 王润秋, 孙帆. 块体离散元颗粒模型细观参数标定方法及花岗岩细观演化模拟 [J]. 长江科学院院报, 2022, 39(1): 86–93. doi: 10.11988/ckyyb.20200917

    WANG G L, WANG R Q, SUN F. A discrete element GBM simulation method for meso-parameter calibration and granite meso-evolution simulation [J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(1): 86–93. doi: 10.11988/ckyyb.20200917
    [25]
    周喻, 高永涛, 吴顺川, 等. 等效晶质模型及岩石力学特征细观研究 [J]. 岩石力学与工程学报, 2015, 34(3): 511–519. doi: 10.13722/j.cnki.jrme.2015.03.008

    ZHOU Y, GAO Y T, WU S C, et al. An equivalent crystal model for mesoscopic behaviour of rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 511–519. doi: 10.13722/j.cnki.jrme.2015.03.008
    [26]
    方新宇, 许金余, 刘石, 等. 岩石SHPB试验中子弹形状对加载波形的数值模拟 [J]. 地下空间与工程学报, 2013, 9(5): 1000–1005.

    FANG X Y, XU J Y, LIU S, et al. Numerical simulation on the influence of projectile shape on loading waveform in SHPB tests of rocks [J]. Chinese Journal of Underground Space and Engineering, 2013, 9(5): 1000–1005.
    [27]
    杨友山, 陈小伟. 脉冲整形器对SHPB波形的影响 [J]. 西南科技大学学报, 2013, 28(1): 36–42. doi: 10.3969/j.issn.1671-8755.2013.01.008

    YANG Y S, CHEN X W. The effect of impulse shaper on the SHPB waves [J]. Journal of Southwest University of Science and Technology, 2013, 28(1): 36–42. doi: 10.3969/j.issn.1671-8755.2013.01.008
    [28]
    杨阳, 王建国, 方士正, 等. 霍普金森撞击杆对入射波形影响的数值模拟 [J]. 工程爆破, 2020, 26(1): 7–14, 35. doi: 10.3969/j.issn.1006-7051.2020.01.002

    YANG Y, WANG J G, FANG S Z, et al. Numerical simulation on the influence of incident wave shape by Hopkinson striker bar [J]. Engineering Blasting, 2020, 26(1): 7–14, 35. doi: 10.3969/j.issn.1006-7051.2020.01.002
    [29]
    平琦, 马芹永, 袁璞. 岩石SHPB实验加载过程中应力平衡问题分析 [J]. 爆炸与冲击, 2013, 33(6): 655–661. doi: 10.11883/1001-1455(2013)06-0655-07

    PING Q, MA Q Y, YUAN P. Stress equilibrium in rock specimen during the loading process of SHPB experiment [J]. Explosion and Shock Waves, 2013, 33(6): 655–661. doi: 10.11883/1001-1455(2013)06-0655-07
    [30]
    张涛, 蔚立元, 鞠明和, 等. 基于PFC3D-GBM的晶体-单元体尺寸比对花岗岩动态拉伸特性影响分析 [J]. 岩石力学与工程学报, 2022, 41(3): 468–478. doi: 10.13722/j.cnki.jrme.2021.0303

    ZHANG T, YU L Y, JU M H, et al. Study on the effect of grain size-particle size ratio on the dynamic tensile properties of granite based on PFC3D-GBM [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3): 468–478. doi: 10.13722/j.cnki.jrme.2021.0303
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views(188) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return