Citation: | CUI Niansheng, WEI Jianlin, YUAN Zengsen, XU Zhenyang, LIU Xin, WANG Xuesong. Simulation Analysis of Mesoscale Characteristics in the Dynamic Fracture Damage of Heterogeneous Rock[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044204. doi: 10.11858/gywlxb.20230638 |
[1] |
张杰, 郭奇峰, 蔡美峰, 等. 循环扰动荷载作用下花岗岩中裂隙萌生扩展过程的颗粒流模拟 [J]. 工程科学学报, 2021, 43(5): 636–646. doi: 10.13374/j.issn2095-9389.2020.03.15.003
ZHANG J, GUO Q F, CAI M F, et al. Particle flow simulation of the crack propagation characteristics of granite under cyclic load [J]. Chinese Journal of Engineering, 2021, 43(5): 636–646. doi: 10.13374/j.issn2095-9389.2020.03.15.003
|
[2] |
李夕兵. 岩石动力学基础与应用 [M]. 北京: 科学出版社, 2014: 258−287.
LI X B. Rock dynamics fundamentals and applications [M]. Beijing: Science Press, 2014: 258−287.
|
[3] |
李晓锋, 李海波, 刘凯, 等. 冲击荷载作用下岩石动态力学特性及破裂特征研究 [J]. 岩石力学与工程学报, 2017, 36(10): 2393–2405. doi: 10.13722/j.cnki.jrme.2017.0539
LI X F, LI H B, LIU K, et al. Dynamic properties and fracture characteristics of rocks subject to impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2393–2405. doi: 10.13722/j.cnki.jrme.2017.0539
|
[4] |
ZHOU Z L, ZHAO Y, JIANG Y H, et al. Dynamic behavior of rock during its post failure stage in SHPB tests [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 184–196. doi: 10.1016/S1003-6326(17)60021-9
|
[5] |
赵翰卿, 任会兰. 陶瓷巴西圆盘动态劈裂的离散元模拟 [J]. 兵器装备工程学报, 2021, 42(3): 119–124. doi: 10.11809/bqzbgcxb2021.03.023
ZHAO H Q, REN H L. Discrete element simulation of dynamic splitting of ceramic Brazilian disc [J]. Journal of Ordnance Equipment Engineering, 2021, 42(3): 119–124. doi: 10.11809/bqzbgcxb2021.03.023
|
[6] |
POTYONDY D O. The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions [J]. Geosystem Engineering, 2015, 18(1): 1–28. doi: 10.1080/12269328.2014.998346
|
[7] |
INGA C E C, WALTON G, HOLLEY E. Statistical assessment of the effects of grain-structure representation and micro-properties on the behavior of bonded block models for brittle rock damage prediction [J]. Sustainability, 2021, 13(14): 7889. doi: 10.3390/su13147889
|
[8] |
WANG Z H, YANG S L, LI L H, et al. A 3D Voronoi clump based model for simulating failure behavior of brittle rock [J]. Engineering Fracture Mechanics, 2021, 248: 107720. doi: 10.1016/j.engfracmech.2021.107720
|
[9] |
李博, 梁秦源, 周宇, 等. 基于CT-GBM重构法的花岗岩裂纹扩展规律研究 [J]. 岩石力学与工程学报, 2022, 41(6): 1114–1125. doi: 10.13722/j.cnki.jrme.2021.0837
LI B, LIANG Q Y, ZHOU Y, et al. Research on crack propagation law of granite based on CT-GBM reconstruction method [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(6): 1114–1125. doi: 10.13722/j.cnki.jrme.2021.0837
|
[10] |
ZHANG X P, JI P Q, PENG J, et al. A grain-based model considering pre-existing cracks for modelling mechanical properties of crystalline rock [J]. Computers and Geotechnics, 2020, 127: 103776. doi: 10.1016/j.compgeo.2020.103776
|
[11] |
胡训健, 卞康, 谢正勇, 等. 细观结构的非均质性对花岗岩强度及变形影响的颗粒流模拟 [J]. 岩土工程学报, 2020, 42(8): 1540–1548. doi: 10.11779/CJGE202008020
HU X J, BIAN K, XIE Z Y, et al. Influence of meso-structure heterogeneity on granite strength and deformation with particle flow code [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1540–1548. doi: 10.11779/CJGE202008020
|
[12] |
LI H, YANG J, HAN Y, et al. Weibull grain-based model (W-GBM) for simulating heterogeneous mechanical characteristics of salt rock [J]. Engineering Analysis with Boundary Elements, 2019, 108: 227–243. doi: 10.1016/j.enganabound.2019.09.001
|
[13] |
SAADAT M, TAHERI A. Modelling micro-cracking behaviour of granite during direct tensile test using cohesive GBM approach [J]. Engineering Fracture Mechanics, 2020, 239: 107297. doi: 10.1016/j.engfracmech.2020.107297
|
[14] |
SAADAT M, TAHERI A. Modelling micro-cracking behaviour of pre-cracked granite using grain-based distinct element model [J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4669–4692. doi: 10.1007/s00603-019-01862-0
|
[15] |
SAADAT M, TAHERI A, KAWAMURA Y. Investigating asperity damage of natural rock joints in polycrystalline rocks under confining pressure using grain-based model [J]. Computers and Geotechnics, 2021, 135: 104144. doi: 10.1016/j.compgeo.2021.104144
|
[16] |
LIU G, CAI M, HUANG M. Mechanical properties of brittle rock governed by micro-geometric heterogeneity [J]. Computers and Geotechnics, 2018, 104: 358–372. doi: 10.1016/j.compgeo.2017.11.013
|
[17] |
张涛, 蔚立元, 苏海健, 等. 基于FDM-DEM耦合的冲击损伤大理岩静态断裂力学特征研究 [J]. 爆炸与冲击, 2022, 42(1): 013103. doi: 10.11883/bzycj-2021-0089
ZHANG T, YU L Y, SU H J, et al. Investigation on the static fracture mechanical characteristics of marble subjected to impact damage based on the FDM-DEM coupled simulation [J]. Explosion and Shock Waves, 2022, 42(1): 013103. doi: 10.11883/bzycj-2021-0089
|
[18] |
赵奎, 伍文凯, 曾鹏, 等. 不同细观组分花岗岩力学特性的颗粒流模拟 [J]. 矿业研究与开发, 2020, 40(1): 32–36. doi: 10.13827/j.cnki.kyyk.2020.01.007
ZHAO K, WU W K, ZENG P, et al. Particle flow code simulation on mechanical properties of various meso-compositions granites [J]. Mining Research and Development, 2020, 40(1): 32–36. doi: 10.13827/j.cnki.kyyk.2020.01.007
|
[19] |
刘帅奇, 马凤山, 郭捷, 等. 基于Multi Pb-GBM方法的花岗岩细观力学行为数值研究 [J]. 岩石力学与工程学报, 2020, 39(11): 2283–2295. doi: 10.13722/j.cnki.jrme.2020.0374
LIU S Q, MA F S, GUO J, et al. Numerical study on mesoscopic mechanical behaviors of granite based on Multi Pb-GBM method [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2283–2295. doi: 10.13722/j.cnki.jrme.2020.0374
|
[20] |
CASTRO-FILGUEIRA U, ALEJANO L R, ARZÚA J, et al. Sensitivity analysis of the micro-parameters used in a PFC analysis towards the mechanical properties of rocks [J]. Procedia Engineering, 2017, 191: 488–495. doi: 10.1016/j.proeng.2017.05.208
|
[21] |
陈鹏宇, 孔莹, 余宏明. 岩石单轴压缩PFC2D模型细观参数标定研究 [J]. 地下空间与工程学报, 2018, 14(5): 1240–1249.
CHEN P Y, KONG Y, YU H M. Research on the calibration method of microparameters of a uniaxial compression PFC2D model for rock [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1240–1249.
|
[22] |
石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用 [M]. 北京: 中国建筑工业出版社, 2018.
SHI C, ZHANG Q, WANG S N. Numerical simulation technology and application with particle flow code (PFC5.0) [M]. Beijing: China Architecture and Building Press, 2018.
|
[23] |
WONG L N Y, PENG J. Numerical investigation of micro-cracking behavior of brittle rock containing a pore-like flaw under uniaxial compression [J]. International Journal of Damage Mechanics, 2020, 29(10): 1543–1568. doi: 10.1177/1056789520914700
|
[24] |
王桂林, 王润秋, 孙帆. 块体离散元颗粒模型细观参数标定方法及花岗岩细观演化模拟 [J]. 长江科学院院报, 2022, 39(1): 86–93. doi: 10.11988/ckyyb.20200917
WANG G L, WANG R Q, SUN F. A discrete element GBM simulation method for meso-parameter calibration and granite meso-evolution simulation [J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(1): 86–93. doi: 10.11988/ckyyb.20200917
|
[25] |
周喻, 高永涛, 吴顺川, 等. 等效晶质模型及岩石力学特征细观研究 [J]. 岩石力学与工程学报, 2015, 34(3): 511–519. doi: 10.13722/j.cnki.jrme.2015.03.008
ZHOU Y, GAO Y T, WU S C, et al. An equivalent crystal model for mesoscopic behaviour of rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 511–519. doi: 10.13722/j.cnki.jrme.2015.03.008
|
[26] |
方新宇, 许金余, 刘石, 等. 岩石SHPB试验中子弹形状对加载波形的数值模拟 [J]. 地下空间与工程学报, 2013, 9(5): 1000–1005.
FANG X Y, XU J Y, LIU S, et al. Numerical simulation on the influence of projectile shape on loading waveform in SHPB tests of rocks [J]. Chinese Journal of Underground Space and Engineering, 2013, 9(5): 1000–1005.
|
[27] |
杨友山, 陈小伟. 脉冲整形器对SHPB波形的影响 [J]. 西南科技大学学报, 2013, 28(1): 36–42. doi: 10.3969/j.issn.1671-8755.2013.01.008
YANG Y S, CHEN X W. The effect of impulse shaper on the SHPB waves [J]. Journal of Southwest University of Science and Technology, 2013, 28(1): 36–42. doi: 10.3969/j.issn.1671-8755.2013.01.008
|
[28] |
杨阳, 王建国, 方士正, 等. 霍普金森撞击杆对入射波形影响的数值模拟 [J]. 工程爆破, 2020, 26(1): 7–14, 35. doi: 10.3969/j.issn.1006-7051.2020.01.002
YANG Y, WANG J G, FANG S Z, et al. Numerical simulation on the influence of incident wave shape by Hopkinson striker bar [J]. Engineering Blasting, 2020, 26(1): 7–14, 35. doi: 10.3969/j.issn.1006-7051.2020.01.002
|
[29] |
平琦, 马芹永, 袁璞. 岩石SHPB实验加载过程中应力平衡问题分析 [J]. 爆炸与冲击, 2013, 33(6): 655–661. doi: 10.11883/1001-1455(2013)06-0655-07
PING Q, MA Q Y, YUAN P. Stress equilibrium in rock specimen during the loading process of SHPB experiment [J]. Explosion and Shock Waves, 2013, 33(6): 655–661. doi: 10.11883/1001-1455(2013)06-0655-07
|
[30] |
张涛, 蔚立元, 鞠明和, 等. 基于PFC3D-GBM的晶体-单元体尺寸比对花岗岩动态拉伸特性影响分析 [J]. 岩石力学与工程学报, 2022, 41(3): 468–478. doi: 10.13722/j.cnki.jrme.2021.0303
ZHANG T, YU L Y, JU M H, et al. Study on the effect of grain size-particle size ratio on the dynamic tensile properties of granite based on PFC3D-GBM [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3): 468–478. doi: 10.13722/j.cnki.jrme.2021.0303
|